Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d1_noneq_minimal_8.m @ 307:fefb2f9884f7 feature/beams
Merge with default.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 23 Sep 2016 10:40:12 +0200 |
parents | f7ac3cd6eeaa |
children | 4cb627c7fb90 |
comparison
equal
deleted
inserted
replaced
306:8368beb0d1b3 | 307:fefb2f9884f7 |
---|---|
1 function [D1,H,x,h] = d1_noneq_minimal_8(N,L) | |
2 | |
3 % L: Domain length | |
4 % N: Number of grid points | |
5 if(nargin < 2) | |
6 L = 1; | |
7 end | |
8 | |
9 if(N<12) | |
10 error('Operator requires at least 12 grid points'); | |
11 end | |
12 | |
13 % BP: Number of boundary points | |
14 % m: Number of nonequidistant spacings | |
15 % order: Accuracy of interior stencil | |
16 BP = 6; | |
17 m = 2; | |
18 order = 8; | |
19 | |
20 %%%% Non-equidistant grid points %%%%% | |
21 x0 = 0.0000000000000e+00; | |
22 x1 = 4.9439570885261e-01; | |
23 x2 = 1.4051531374839e+00; | |
24 x3 = 2.4051531374839e+00; | |
25 x4 = 3.4051531374839e+00; | |
26 x5 = 4.4051531374839e+00; | |
27 x6 = 5.4051531374839e+00; | |
28 | |
29 xb = sparse(m+1,1); | |
30 for i = 0:m | |
31 xb(i+1) = eval(['x' num2str(i)]); | |
32 end | |
33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
34 | |
35 %%%% Compute h %%%%%%%%%% | |
36 h = L/(2*xb(end) + N-1-2*m); | |
37 %%%%%%%%%%%%%%%%%%%%%%%%% | |
38 | |
39 %%%% Define grid %%%%%%%% | |
40 x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; | |
41 %%%%%%%%%%%%%%%%%%%%%%%%% | |
42 | |
43 %%%% Norm matrix %%%%%%%% | |
44 P = sparse(BP,1); | |
45 %#ok<*NASGU> | |
46 P0 = 1.4523997892351e-01; | |
47 P1 = 7.6864793350174e-01; | |
48 P2 = 9.9116487068535e-01; | |
49 P3 = 9.9992473335107e-01; | |
50 P4 = 1.0002097054636e+00; | |
51 P5 = 9.9996591555866e-01; | |
52 | |
53 for i = 0:BP-1 | |
54 P(i+1) = eval(['P' num2str(i)]); | |
55 end | |
56 | |
57 H = ones(N,1); | |
58 H(1:BP) = P; | |
59 H(end-BP+1:end) = flip(P); | |
60 H = spdiags(h*H,0,N,N); | |
61 %%%%%%%%%%%%%%%%%%%%%%%%% | |
62 | |
63 %%%% Q matrix %%%%%%%%%%% | |
64 | |
65 % interior stencil | |
66 switch order | |
67 case 2 | |
68 d = [-1/2,0,1/2]; | |
69 case 4 | |
70 d = [1/12,-2/3,0,2/3,-1/12]; | |
71 case 6 | |
72 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; | |
73 case 8 | |
74 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; | |
75 case 10 | |
76 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; | |
77 case 12 | |
78 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; | |
79 end | |
80 d = repmat(d,N,1); | |
81 Q = spdiags(d,-order/2:order/2,N,N); | |
82 | |
83 % Boundaries | |
84 Q0_0 = -5.0000000000000e-01; | |
85 Q0_1 = 6.6697342753834e-01; | |
86 Q0_2 = -2.2919342278749e-01; | |
87 Q0_3 = 7.4283116457276e-02; | |
88 Q0_4 = -1.2020661178873e-02; | |
89 Q0_5 = -4.2460029252999e-05; | |
90 Q0_6 = 0.0000000000000e+00; | |
91 Q0_7 = 0.0000000000000e+00; | |
92 Q0_8 = 0.0000000000000e+00; | |
93 Q0_9 = 0.0000000000000e+00; | |
94 Q1_0 = -6.6697342753834e-01; | |
95 Q1_1 = 0.0000000000000e+00; | |
96 Q1_2 = 8.8241196934163e-01; | |
97 Q1_3 = -2.6653314104602e-01; | |
98 Q1_4 = 5.5302527504316e-02; | |
99 Q1_5 = -4.2079282615860e-03; | |
100 Q1_6 = 0.0000000000000e+00; | |
101 Q1_7 = 0.0000000000000e+00; | |
102 Q1_8 = 0.0000000000000e+00; | |
103 Q1_9 = 0.0000000000000e+00; | |
104 Q2_0 = 2.2919342278749e-01; | |
105 Q2_1 = -8.8241196934163e-01; | |
106 Q2_2 = 0.0000000000000e+00; | |
107 Q2_3 = 8.2904844081126e-01; | |
108 Q2_4 = -2.1156614214635e-01; | |
109 Q2_5 = 3.9307676460659e-02; | |
110 Q2_6 = -3.5714285714286e-03; | |
111 Q2_7 = 0.0000000000000e+00; | |
112 Q2_8 = 0.0000000000000e+00; | |
113 Q2_9 = 0.0000000000000e+00; | |
114 Q3_0 = -7.4283116457276e-02; | |
115 Q3_1 = 2.6653314104602e-01; | |
116 Q3_2 = -8.2904844081126e-01; | |
117 Q3_3 = 0.0000000000000e+00; | |
118 Q3_4 = 8.0305501223679e-01; | |
119 Q3_5 = -2.0078040553808e-01; | |
120 Q3_6 = 3.8095238095238e-02; | |
121 Q3_7 = -3.5714285714286e-03; | |
122 Q3_8 = 0.0000000000000e+00; | |
123 Q3_9 = 0.0000000000000e+00; | |
124 Q4_0 = 1.2020661178873e-02; | |
125 Q4_1 = -5.5302527504316e-02; | |
126 Q4_2 = 2.1156614214635e-01; | |
127 Q4_3 = -8.0305501223679e-01; | |
128 Q4_4 = 0.0000000000000e+00; | |
129 Q4_5 = 8.0024692689207e-01; | |
130 Q4_6 = -2.0000000000000e-01; | |
131 Q4_7 = 3.8095238095238e-02; | |
132 Q4_8 = -3.5714285714286e-03; | |
133 Q4_9 = 0.0000000000000e+00; | |
134 Q5_0 = 4.2460029252999e-05; | |
135 Q5_1 = 4.2079282615860e-03; | |
136 Q5_2 = -3.9307676460659e-02; | |
137 Q5_3 = 2.0078040553808e-01; | |
138 Q5_4 = -8.0024692689207e-01; | |
139 Q5_5 = 0.0000000000000e+00; | |
140 Q5_6 = 8.0000000000000e-01; | |
141 Q5_7 = -2.0000000000000e-01; | |
142 Q5_8 = 3.8095238095238e-02; | |
143 Q5_9 = -3.5714285714286e-03; | |
144 for i = 1:BP | |
145 for j = 1:BP | |
146 Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
147 Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
148 end | |
149 end | |
150 %%%%%%%%%%%%%%%%%%%%%%%%%%% | |
151 | |
152 %%%% Difference operator %% | |
153 D1 = H\Q; | |
154 %%%%%%%%%%%%%%%%%%%%%%%%%%% |