Mercurial > repos > public > sbplib
comparison +scheme/Utux.m @ 756:f891758ad7a4 feature/d1_staggered
Merge with feature/utux2d.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Sat, 16 Jun 2018 14:30:45 -0700 |
parents | efe2dbf9796e |
children | 459eeb99130f |
comparison
equal
deleted
inserted
replaced
755:14f0058356f2 | 756:f891758ad7a4 |
---|---|
1 classdef Utux < scheme.Scheme | 1 classdef Utux < scheme.Scheme |
2 properties | 2 properties |
3 m % Number of points in each direction, possibly a vector | 3 m % Number of points in each direction, possibly a vector |
4 h % Grid spacing | 4 h % Grid spacing |
5 x % Grid | 5 grid % Grid |
6 order % Order accuracy for the approximation | 6 order % Order accuracy for the approximation |
7 | 7 |
8 H % Discrete norm | 8 H % Discrete norm |
9 D | 9 D |
10 | 10 |
15 v0 | 15 v0 |
16 end | 16 end |
17 | 17 |
18 | 18 |
19 methods | 19 methods |
20 function obj = Utux(m,xlim,order,operator) | 20 function obj = Utux(g ,order, operator) |
21 default_arg('a',1); | 21 default_arg('operator','Standard'); |
22 | 22 |
23 %Old operators | 23 m = g.size(); |
24 % [x, h] = util.get_grid(xlim{:},m); | 24 xl = g.getBoundary('l'); |
25 %ops = sbp.Ordinary(m,h,order); | 25 xr = g.getBoundary('r'); |
26 | 26 xlim = {xl, xr}; |
27 | 27 |
28 switch operator | 28 switch operator |
29 case 'NonEquidistant' | 29 % case 'NonEquidistant' |
30 ops = sbp.D1Nonequidistant(m,xlim,order); | 30 % ops = sbp.D1Nonequidistant(m,xlim,order); |
31 obj.D1 = ops.D1; | 31 % obj.D1 = ops.D1; |
32 case 'Standard' | 32 case 'Standard' |
33 ops = sbp.D2Standard(m,xlim,order); | 33 ops = sbp.D2Standard(m,xlim,order); |
34 obj.D1 = ops.D1; | 34 obj.D1 = ops.D1; |
35 case 'Upwind' | 35 % case 'Upwind' |
36 ops = sbp.D1Upwind(m,xlim,order); | 36 % ops = sbp.D1Upwind(m,xlim,order); |
37 obj.D1 = ops.Dm; | 37 % obj.D1 = ops.Dm; |
38 otherwise | 38 otherwise |
39 error('Unvalid operator') | 39 error('Unvalid operator') |
40 end | 40 end |
41 obj.x=ops.x; | 41 |
42 obj.grid = g; | |
42 | 43 |
43 | |
44 obj.H = ops.H; | 44 obj.H = ops.H; |
45 obj.Hi = ops.HI; | 45 obj.Hi = ops.HI; |
46 | 46 |
47 obj.e_l = ops.e_l; | 47 obj.e_l = ops.e_l; |
48 obj.e_r = ops.e_r; | 48 obj.e_r = ops.e_r; |
49 obj.D=obj.D1; | 49 obj.D = -obj.D1; |
50 | 50 |
51 obj.m = m; | 51 obj.m = m; |
52 obj.h = ops.h; | 52 obj.h = ops.h; |
53 obj.order = order; | 53 obj.order = order; |
54 obj.x = ops.x; | |
55 | 54 |
56 end | 55 end |
57 % Closure functions return the opertors applied to the own doamin to close the boundary | 56 % Closure functions return the opertors applied to the own doamin to close the boundary |
58 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | 57 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. |
59 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | 58 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. |
60 % type is a string specifying the type of boundary condition if there are several. | 59 % type is a string specifying the type of boundary condition if there are several. |
61 % data is a function returning the data that should be applied at the boundary. | 60 % data is a function returning the data that should be applied at the boundary. |
62 % neighbour_scheme is an instance of Scheme that should be interfaced to. | 61 % neighbour_scheme is an instance of Scheme that should be interfaced to. |
63 % neighbour_boundary is a string specifying which boundary to interface to. | 62 % neighbour_boundary is a string specifying which boundary to interface to. |
64 function [closure, penalty] = boundary_condition(obj,boundary,type,data) | 63 function [closure, penalty] = boundary_condition(obj,boundary,type) |
65 default_arg('type','neumann'); | 64 default_arg('type','dirichlet'); |
66 default_arg('data',0); | |
67 tau =-1*obj.e_l; | 65 tau =-1*obj.e_l; |
68 closure = obj.Hi*tau*obj.e_l'; | 66 closure = obj.Hi*tau*obj.e_l'; |
69 penalty = 0*obj.e_l; | 67 penalty = -obj.Hi*tau; |
70 | 68 |
71 end | 69 end |
72 | 70 |
73 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | 71 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) |
74 error('An interface function does not exist yet'); | 72 switch boundary |
73 % Upwind coupling | |
74 case {'l','left'} | |
75 tau = -1*obj.e_l; | |
76 closure = obj.Hi*tau*obj.e_l'; | |
77 penalty = -obj.Hi*tau*neighbour_scheme.e_r'; | |
78 case {'r','right'} | |
79 tau = 0*obj.e_r; | |
80 closure = obj.Hi*tau*obj.e_r'; | |
81 penalty = -obj.Hi*tau*neighbour_scheme.e_l'; | |
82 end | |
83 | |
75 end | 84 end |
76 | 85 |
77 function N = size(obj) | 86 function N = size(obj) |
78 N = obj.m; | 87 N = obj.m; |
79 end | 88 end |
80 | 89 |
81 end | 90 end |
82 | 91 |
83 methods(Static) | 92 methods(Static) |
84 % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u | 93 % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u |
85 % and bound_v of scheme schm_v. | 94 % and bound_v of scheme schm_v. |
86 % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') | 95 % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') |
87 function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) | 96 function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) |
88 [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); | 97 [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); |
89 [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); | 98 [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); |
90 end | 99 end |
91 end | 100 end |