Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_compatible_4.m @ 267:f7ac3cd6eeaa operator_remake
Sparsified all implementation files, removed all matlab warnings, fixed small bugs on minimum grid points.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Fri, 09 Sep 2016 14:53:41 +0200 |
parents | bfa130b7abf6 |
children |
comparison
equal
deleted
inserted
replaced
266:bfa130b7abf6 | 267:f7ac3cd6eeaa |
---|---|
29 BP = 6; | 29 BP = 6; |
30 if(m<2*BP) | 30 if(m<2*BP) |
31 error(['Operator requires at least ' num2str(2*BP) ' grid points']); | 31 error(['Operator requires at least ' num2str(2*BP) ' grid points']); |
32 end | 32 end |
33 | 33 |
34 H=diag(ones(m,1),0); | 34 H=speye(m,m); |
35 H_U=[0.3e1 / 0.11e2 0 0 0 0 0; 0 0.2125516311e10 / 0.1311004640e10 0 0 0 0; 0 0 0.278735189e9 / 0.1966506960e10 0 0 0; 0 0 0 0.285925927e9 / 0.163875580e9 0 0; 0 0 0 0 0.1284335339e10 / 0.1966506960e10 0; 0 0 0 0 0 0.4194024163e10 / 0.3933013920e10;]; | 35 H_U=[0.3e1 / 0.11e2 0 0 0 0 0; 0 0.2125516311e10 / 0.1311004640e10 0 0 0 0; 0 0 0.278735189e9 / 0.1966506960e10 0 0 0; 0 0 0 0.285925927e9 / 0.163875580e9 0 0; 0 0 0 0 0.1284335339e10 / 0.1966506960e10 0; 0 0 0 0 0 0.4194024163e10 / 0.3933013920e10;]; |
36 H(1:6,1:6)=H_U; | 36 H(1:6,1:6)=H_U; |
37 H(m-5:m,m-5:m)=fliplr(flipud(H_U)); | 37 H(m-5:m,m-5:m)=rot90(H_U,2); |
38 H=H*h; | 38 H=H*h; |
39 HI=inv(H); | 39 HI=inv(H); |
40 | 40 |
41 | 41 |
42 % First derivative SBP operator, 1st order accurate at first 6 boundary points | 42 % First derivative SBP operator, 1st order accurate at first 6 boundary points |
43 | 43 |
44 q2=-1/12;q1=8/12; | 44 q2=-1/12;q1=8/12; |
45 Q=q2*(diag(ones(m-2,1),2) - diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | 45 % Q=q2*(diag(ones(m-2,1),2) - diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); |
46 stencil = [-q2,-q1,0,q1,q2]; | |
47 d = (length(stencil)-1)/2; | |
48 diags = -d:d; | |
49 Q = stripeMatrix(stencil, diags, m); | |
46 | 50 |
47 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); | 51 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); |
48 | 52 |
49 Q_U = [0 0.9e1 / 0.11e2 -0.9e1 / 0.22e2 0.1e1 / 0.11e2 0 0; -0.9e1 / 0.11e2 0 0.2595224893e10 / 0.2622009280e10 -0.151435707e9 / 0.327751160e9 0.1112665611e10 / 0.2622009280e10 -0.1290899e7 / 0.9639740e7; 0.9e1 / 0.22e2 -0.2595224893e10 / 0.2622009280e10 0 0.1468436423e10 / 0.983253480e9 -0.1194603401e10 / 0.983253480e9 0.72033031e8 / 0.238364480e9; -0.1e1 / 0.11e2 0.151435707e9 / 0.327751160e9 -0.1468436423e10 / 0.983253480e9 0 0.439819541e9 / 0.327751160e9 -0.215942641e9 / 0.983253480e9; 0 -0.1112665611e10 / 0.2622009280e10 0.1194603401e10 / 0.983253480e9 -0.439819541e9 / 0.327751160e9 0 0.1664113643e10 / 0.2622009280e10; 0 0.1290899e7 / 0.9639740e7 -0.72033031e8 / 0.238364480e9 0.215942641e9 / 0.983253480e9 -0.1664113643e10 / 0.2622009280e10 0;]; | 53 Q_U = [0 0.9e1 / 0.11e2 -0.9e1 / 0.22e2 0.1e1 / 0.11e2 0 0; -0.9e1 / 0.11e2 0 0.2595224893e10 / 0.2622009280e10 -0.151435707e9 / 0.327751160e9 0.1112665611e10 / 0.2622009280e10 -0.1290899e7 / 0.9639740e7; 0.9e1 / 0.22e2 -0.2595224893e10 / 0.2622009280e10 0 0.1468436423e10 / 0.983253480e9 -0.1194603401e10 / 0.983253480e9 0.72033031e8 / 0.238364480e9; -0.1e1 / 0.11e2 0.151435707e9 / 0.327751160e9 -0.1468436423e10 / 0.983253480e9 0 0.439819541e9 / 0.327751160e9 -0.215942641e9 / 0.983253480e9; 0 -0.1112665611e10 / 0.2622009280e10 0.1194603401e10 / 0.983253480e9 -0.439819541e9 / 0.327751160e9 0 0.1664113643e10 / 0.2622009280e10; 0 0.1290899e7 / 0.9639740e7 -0.72033031e8 / 0.238364480e9 0.215942641e9 / 0.983253480e9 -0.1664113643e10 / 0.2622009280e10 0;]; |
50 Q(1:6,1:6)=Q_U; | 54 Q(1:6,1:6)=Q_U; |
51 Q(m-5:m,m-5:m)=flipud( fliplr( -Q_U ) ); | 55 Q(m-5:m,m-5:m)=rot90( -Q_U ,2 ); |
52 | 56 |
53 e_1=zeros(m,1);e_1(1)=1; | 57 e_1=sparse(m,1);e_1(1)=1; |
54 e_m=zeros(m,1);e_m(m)=1; | 58 e_m=sparse(m,1);e_m(m)=1; |
55 | 59 |
56 | 60 |
57 D1=HI*(Q-1/2*e_1*e_1'+1/2*e_m*e_m') ; | 61 D1=H\(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; |
58 | 62 |
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
60 | 64 |
61 | 65 |
62 | 66 |
70 % | 74 % |
71 % M(m-5:m,m-5:m)=flipud( fliplr( M_U ) ); | 75 % M(m-5:m,m-5:m)=flipud( fliplr( M_U ) ); |
72 % M=M/h; | 76 % M=M/h; |
73 % | 77 % |
74 S_U=[-0.11e2 / 0.6e1 3 -0.3e1 / 0.2e1 0.1e1 / 0.3e1;]/h; | 78 S_U=[-0.11e2 / 0.6e1 3 -0.3e1 / 0.2e1 0.1e1 / 0.3e1;]/h; |
75 S_1=zeros(1,m); | 79 S_1=sparse(1,m); |
76 S_1(1:4)=S_U; | 80 S_1(1:4)=S_U; |
77 S_m=zeros(1,m); | 81 S_m=sparse(1,m); |
78 | 82 |
79 S_m(m-3:m)=fliplr(-S_U); | 83 S_m(m-3:m)=fliplr(-S_U); |
80 | 84 |
81 % D2=HI*(-M-e_1*S_1+e_m*S_m); | 85 % D2=H\(-M-e_1*S_1+e_m*S_m); |
82 | 86 |
83 | 87 |
84 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 88 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
85 | 89 |
86 | 90 |
100 % Q3=Q3/h^2; | 104 % Q3=Q3/h^2; |
101 | 105 |
102 | 106 |
103 | 107 |
104 S2_U=[2 -5 4 -1;]/h^2; | 108 S2_U=[2 -5 4 -1;]/h^2; |
105 S2_1=zeros(1,m); | 109 S2_1=sparse(1,m); |
106 S2_1(1:4)=S2_U; | 110 S2_1(1:4)=S2_U; |
107 S2_m=zeros(1,m); | 111 S2_m=sparse(1,m); |
108 S2_m(m-3:m)=fliplr(S2_U); | 112 S2_m(m-3:m)=fliplr(S2_U); |
109 | 113 |
110 | 114 |
111 | 115 |
112 %D3=HI*(Q3 - e_1*S2_1 + e_m*S2_m +1/2*S_1'*S_1 -1/2*S_m'*S_m ) ; | 116 %D3=H\(Q3 - e_1*S2_1 + e_m*S2_m +1/2*(S_1'*S_1) -1/2*(S_m'*S_m) ) ; |
113 | 117 |
114 % Fourth derivative, 0th order accurate at first 6 boundary points (still | 118 % Fourth derivative, 0th order accurate at first 6 boundary points (still |
115 % yield 4th order convergence if stable: for example u_tt=-u_xxxx | 119 % yield 4th order convergence if stable: for example u_tt=-u_xxxx |
116 | 120 |
117 m3=-1/6;m2=2;m1=-13/2;m0=28/3; | 121 m3=-1/6;m2=2;m1=-13/2;m0=28/3; |
118 M4=m3*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3))+m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); | 122 % M4=m3*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3))+m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); |
123 | |
124 stencil = [m3,m2,m1,m0,m1,m2,m3]; | |
125 d = (length(stencil)-1)/2; | |
126 diags = -d:d; | |
127 M4 = stripeMatrix(stencil, diags, m); | |
119 | 128 |
120 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); | 129 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); |
121 | 130 |
122 M4_U=[0.227176919517319e15 / 0.94899692875680e14 -0.15262605263734e14 / 0.2965615402365e13 0.20205404771243e14 / 0.6778549491120e13 -0.3998303664097e13 / 0.23724923218920e14 0.1088305091927e13 / 0.94899692875680e14 -0.1686077077693e13 / 0.23724923218920e14; -0.15262605263734e14 / 0.2965615402365e13 0.280494781164181e15 / 0.23724923218920e14 -0.46417445546261e14 / 0.5931230804730e13 0.1705307929429e13 / 0.1694637372780e13 -0.553547394061e12 / 0.5931230804730e13 0.5615721694973e13 / 0.23724923218920e14; 0.20205404771243e14 / 0.6778549491120e13 -0.46417445546261e14 / 0.5931230804730e13 0.4135802350237e13 / 0.551742400440e12 -0.4140981465247e13 / 0.1078405600860e13 0.75538453067437e14 / 0.47449846437840e14 -0.4778134936391e13 / 0.11862461609460e14; -0.3998303664097e13 / 0.23724923218920e14 0.1705307929429e13 / 0.1694637372780e13 -0.4140981465247e13 / 0.1078405600860e13 0.20760974175677e14 / 0.2965615402365e13 -0.138330689701889e15 / 0.23724923218920e14 0.23711317526909e14 / 0.11862461609460e14; 0.1088305091927e13 / 0.94899692875680e14 -0.553547394061e12 / 0.5931230804730e13 0.75538453067437e14 / 0.47449846437840e14 -0.138330689701889e15 / 0.23724923218920e14 0.120223780251937e15 / 0.13557098982240e14 -0.151383731537477e15 / 0.23724923218920e14; -0.1686077077693e13 / 0.23724923218920e14 0.5615721694973e13 / 0.23724923218920e14 -0.4778134936391e13 / 0.11862461609460e14 0.23711317526909e14 / 0.11862461609460e14 -0.151383731537477e15 / 0.23724923218920e14 0.220304030094121e15 / 0.23724923218920e14;]; | 131 M4_U=[0.227176919517319e15 / 0.94899692875680e14 -0.15262605263734e14 / 0.2965615402365e13 0.20205404771243e14 / 0.6778549491120e13 -0.3998303664097e13 / 0.23724923218920e14 0.1088305091927e13 / 0.94899692875680e14 -0.1686077077693e13 / 0.23724923218920e14; -0.15262605263734e14 / 0.2965615402365e13 0.280494781164181e15 / 0.23724923218920e14 -0.46417445546261e14 / 0.5931230804730e13 0.1705307929429e13 / 0.1694637372780e13 -0.553547394061e12 / 0.5931230804730e13 0.5615721694973e13 / 0.23724923218920e14; 0.20205404771243e14 / 0.6778549491120e13 -0.46417445546261e14 / 0.5931230804730e13 0.4135802350237e13 / 0.551742400440e12 -0.4140981465247e13 / 0.1078405600860e13 0.75538453067437e14 / 0.47449846437840e14 -0.4778134936391e13 / 0.11862461609460e14; -0.3998303664097e13 / 0.23724923218920e14 0.1705307929429e13 / 0.1694637372780e13 -0.4140981465247e13 / 0.1078405600860e13 0.20760974175677e14 / 0.2965615402365e13 -0.138330689701889e15 / 0.23724923218920e14 0.23711317526909e14 / 0.11862461609460e14; 0.1088305091927e13 / 0.94899692875680e14 -0.553547394061e12 / 0.5931230804730e13 0.75538453067437e14 / 0.47449846437840e14 -0.138330689701889e15 / 0.23724923218920e14 0.120223780251937e15 / 0.13557098982240e14 -0.151383731537477e15 / 0.23724923218920e14; -0.1686077077693e13 / 0.23724923218920e14 0.5615721694973e13 / 0.23724923218920e14 -0.4778134936391e13 / 0.11862461609460e14 0.23711317526909e14 / 0.11862461609460e14 -0.151383731537477e15 / 0.23724923218920e14 0.220304030094121e15 / 0.23724923218920e14;]; |
123 | 132 |
124 M4(1:6,1:6)=M4_U; | 133 M4(1:6,1:6)=M4_U; |
125 | 134 |
126 M4(m-5:m,m-5:m)=flipud( fliplr( M4_U ) ); | 135 M4(m-5:m,m-5:m)=rot90( M4_U ,2 ); |
127 M4=M4/h^3; | 136 M4=M4/h^3; |
128 | 137 |
129 S3_U=[-1 3 -3 1;]/h^3; | 138 S3_U=[-1 3 -3 1;]/h^3; |
130 S3_1=zeros(1,m); | 139 S3_1=sparse(1,m); |
131 S3_1(1:4)=S3_U; | 140 S3_1(1:4)=S3_U; |
132 S3_m=zeros(1,m); | 141 S3_m=sparse(1,m); |
133 S3_m(m-3:m)=fliplr(-S3_U); | 142 S3_m(m-3:m)=fliplr(-S3_U); |
134 | 143 |
135 D4=HI*(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m); | 144 D4=H\(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m); |
136 | 145 |
137 S_1 = S_1'; | 146 S_1 = S_1'; |
138 S_m = S_m'; | 147 S_m = S_m'; |
139 S2_1 = S2_1'; | 148 S2_1 = S2_1'; |
140 S2_m = S2_m'; | 149 S2_m = S2_m'; |