Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_compatible_2.m @ 267:f7ac3cd6eeaa operator_remake
Sparsified all implementation files, removed all matlab warnings, fixed small bugs on minimum grid points.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Fri, 09 Sep 2016 14:53:41 +0200 |
parents | bfa130b7abf6 |
children |
comparison
equal
deleted
inserted
replaced
266:bfa130b7abf6 | 267:f7ac3cd6eeaa |
---|---|
24 % randsplutningar f?r D1 och D2 | 24 % randsplutningar f?r D1 och D2 |
25 | 25 |
26 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, | 26 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, |
27 % vilket ?r n?dv?ndigt f?r stabilitet | 27 % vilket ?r n?dv?ndigt f?r stabilitet |
28 | 28 |
29 BP = 1; | 29 BP = 4; |
30 if(m<2*BP) | 30 if(m<2*BP) |
31 error(['Operator requires at least ' num2str(2*BP) ' grid points']); | 31 error(['Operator requires at least ' num2str(2*BP) ' grid points']); |
32 end | 32 end |
33 | 33 |
34 H=diag(ones(m,1),0);H(1,1)=1/2;H(m,m)=1/2; | 34 H=speye(m,m);H(1,1)=1/2;H(m,m)=1/2; |
35 | 35 |
36 | 36 |
37 H=H*h; | 37 H=H*h; |
38 HI=inv(H); | 38 HI=inv(H); |
39 | 39 |
40 | 40 |
41 % First derivative SBP operator, 1st order accurate at first 6 boundary points | 41 % First derivative SBP operator, 1st order accurate at first 6 boundary points |
42 | 42 |
43 q1=1/2; | 43 q1=1/2; |
44 Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | 44 % Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); |
45 stencil = [-q1,0,q1]; | |
46 d = (length(stencil)-1)/2; | |
47 diags = -d:d; | |
48 Q = stripeMatrix(stencil, diags, m); | |
45 | 49 |
46 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); | 50 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); |
47 | 51 |
48 | 52 |
49 e_1=zeros(m,1);e_1(1)=1; | 53 e_1=sparse(m,1);e_1(1)=1; |
50 e_m=zeros(m,1);e_m(m)=1; | 54 e_m=sparse(m,1);e_m(m)=1; |
51 | 55 |
52 | 56 |
53 D1=HI*(Q-1/2*e_1*e_1'+1/2*e_m*e_m') ; | 57 D1=H\(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; |
54 | 58 |
55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
56 | 60 |
57 | 61 |
58 | 62 |
59 % Second derivative, 1st order accurate at first 6 boundary points | 63 % Second derivative, 1st order accurate at first 6 boundary points |
60 m1=-1;m0=2; | 64 % m1=-1;m0=2; |
61 M=m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);M(1,1)=1;M(m,m)=1; | 65 % % M=m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);M(1,1)=1;M(m,m)=1; |
62 M=M/h; | 66 % stencil = [m2,m1,m0,m1,m2]; |
67 % d = (length(stencil)-1)/2; | |
68 % diags = -d:d; | |
69 % M = stripeMatrix(stencil, diags, m); | |
70 % M=M/h; | |
63 | 71 |
64 S_U=[-1 1]/h; | 72 S_U=[-1 1]/h; |
65 S_1=zeros(1,m); | 73 S_1=sparse(1,m); |
66 S_1(1:2)=S_U; | 74 S_1(1:2)=S_U; |
67 S_m=zeros(1,m); | 75 S_m=sparse(1,m); |
68 | 76 |
69 S_m(m-1:m)=fliplr(-S_U); | 77 S_m(m-1:m)=fliplr(-S_U); |
70 | 78 |
71 D2=HI*(-M-e_1*S_1+e_m*S_m); | 79 % D2=H\(-M-e_1*S_1+e_m*S_m); |
72 | 80 |
73 | 81 |
74 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
75 | 83 |
76 | 84 |
77 | 85 |
78 % Third derivative, 1st order accurate at first 6 boundary points | 86 % Third derivative, 1st order accurate at first 6 boundary points |
79 | 87 |
80 q2=1/2;q1=-1; | 88 % q2=1/2;q1=-1; |
81 Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | 89 % % Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); |
90 % stencil = [-q2,-q1,0,q1,q2]; | |
91 % d = (length(stencil)-1)/2; | |
92 % diags = -d:d; | |
93 % Q3 = stripeMatrix(stencil, diags, m); | |
82 | 94 |
83 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); | 95 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); |
84 | 96 |
85 | 97 |
86 Q3_U = [0 -0.2e1 / 0.5e1 0.3e1 / 0.10e2 0.1e1 / 0.10e2; 0.2e1 / 0.5e1 0 -0.7e1 / 0.10e2 0.3e1 / 0.10e2; -0.3e1 / 0.10e2 0.7e1 / 0.10e2 0 -0.9e1 / 0.10e2; -0.1e1 / 0.10e2 -0.3e1 / 0.10e2 0.9e1 / 0.10e2 0;]; | 98 % Q3_U = [0 -0.2e1 / 0.5e1 0.3e1 / 0.10e2 0.1e1 / 0.10e2; 0.2e1 / 0.5e1 0 -0.7e1 / 0.10e2 0.3e1 / 0.10e2; -0.3e1 / 0.10e2 0.7e1 / 0.10e2 0 -0.9e1 / 0.10e2; -0.1e1 / 0.10e2 -0.3e1 / 0.10e2 0.9e1 / 0.10e2 0;]; |
87 Q3(1:4,1:4)=Q3_U; | 99 % Q3(1:4,1:4)=Q3_U; |
88 Q3(m-3:m,m-3:m)=flipud( fliplr( -Q3_U ) ); | 100 % Q3(m-3:m,m-3:m)=rot90( -Q3_U ,2 ); |
89 Q3=Q3/h^2; | 101 % Q3=Q3/h^2; |
90 | 102 |
91 | 103 |
92 | 104 |
93 S2_U=[1 -2 1;]/h^2; | 105 S2_U=[1 -2 1;]/h^2; |
94 S2_1=zeros(1,m); | 106 S2_1=sparse(1,m); |
95 S2_1(1:3)=S2_U; | 107 S2_1(1:3)=S2_U; |
96 S2_m=zeros(1,m); | 108 S2_m=sparse(1,m); |
97 S2_m(m-2:m)=fliplr(S2_U); | 109 S2_m(m-2:m)=fliplr(S2_U); |
98 | 110 |
99 | 111 |
100 | 112 |
101 D3=HI*(Q3 - e_1*S2_1 + e_m*S2_m +1/2*S_1'*S_1 -1/2*S_m'*S_m ) ; | 113 % D3=H\(Q3 - e_1*S2_1 + e_m*S2_m +1/2*(S_1'*S_1) -1/2*(S_m'*S_m) ) ; |
102 | 114 |
103 % Fourth derivative, 0th order accurate at first 6 boundary points (still | 115 % Fourth derivative, 0th order accurate at first 6 boundary points (still |
104 % yield 4th order convergence if stable: for example u_tt=-u_xxxx | 116 % yield 4th order convergence if stable: for example u_tt=-u_xxxx |
105 | 117 |
106 m2=1;m1=-4;m0=6; | 118 m2=1;m1=-4;m0=6; |
110 | 122 |
111 M4_U=[0.4e1 / 0.5e1 -0.7e1 / 0.5e1 0.2e1 / 0.5e1 0.1e1 / 0.5e1; -0.7e1 / 0.5e1 0.16e2 / 0.5e1 -0.11e2 / 0.5e1 0.2e1 / 0.5e1; 0.2e1 / 0.5e1 -0.11e2 / 0.5e1 0.21e2 / 0.5e1 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;]; | 123 M4_U=[0.4e1 / 0.5e1 -0.7e1 / 0.5e1 0.2e1 / 0.5e1 0.1e1 / 0.5e1; -0.7e1 / 0.5e1 0.16e2 / 0.5e1 -0.11e2 / 0.5e1 0.2e1 / 0.5e1; 0.2e1 / 0.5e1 -0.11e2 / 0.5e1 0.21e2 / 0.5e1 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;]; |
112 | 124 |
113 M4(1:4,1:4)=M4_U; | 125 M4(1:4,1:4)=M4_U; |
114 | 126 |
115 M4(m-3:m,m-3:m)=flipud( fliplr( M4_U ) ); | 127 M4(m-3:m,m-3:m)=rot90( M4_U ,2 ); |
116 M4=M4/h^3; | 128 M4=M4/h^3; |
117 | 129 |
118 S3_U=[-1 3 -3 1;]/h^3; | 130 S3_U=[-1 3 -3 1;]/h^3; |
119 S3_1=zeros(1,m); | 131 S3_1=sparse(1,m); |
120 S3_1(1:4)=S3_U; | 132 S3_1(1:4)=S3_U; |
121 S3_m=zeros(1,m); | 133 S3_m=sparse(1,m); |
122 S3_m(m-3:m)=fliplr(-S3_U); | 134 S3_m(m-3:m)=fliplr(-S3_U); |
123 | 135 |
124 D4=HI*(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m); | 136 D4=H\(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m); |
125 | 137 |
126 | 138 |
127 | 139 |
128 S_1 = S_1'; | 140 S_1 = S_1'; |
129 S_m = S_m'; | 141 S_m = S_m'; |