comparison +sbp/+implementations/d4_compatible_2.m @ 267:f7ac3cd6eeaa operator_remake

Sparsified all implementation files, removed all matlab warnings, fixed small bugs on minimum grid points.
author Martin Almquist <martin.almquist@it.uu.se>
date Fri, 09 Sep 2016 14:53:41 +0200
parents bfa130b7abf6
children
comparison
equal deleted inserted replaced
266:bfa130b7abf6 267:f7ac3cd6eeaa
24 % randsplutningar f?r D1 och D2 24 % randsplutningar f?r D1 och D2
25 25
26 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, 26 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm,
27 % vilket ?r n?dv?ndigt f?r stabilitet 27 % vilket ?r n?dv?ndigt f?r stabilitet
28 28
29 BP = 1; 29 BP = 4;
30 if(m<2*BP) 30 if(m<2*BP)
31 error(['Operator requires at least ' num2str(2*BP) ' grid points']); 31 error(['Operator requires at least ' num2str(2*BP) ' grid points']);
32 end 32 end
33 33
34 H=diag(ones(m,1),0);H(1,1)=1/2;H(m,m)=1/2; 34 H=speye(m,m);H(1,1)=1/2;H(m,m)=1/2;
35 35
36 36
37 H=H*h; 37 H=H*h;
38 HI=inv(H); 38 HI=inv(H);
39 39
40 40
41 % First derivative SBP operator, 1st order accurate at first 6 boundary points 41 % First derivative SBP operator, 1st order accurate at first 6 boundary points
42 42
43 q1=1/2; 43 q1=1/2;
44 Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); 44 % Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1));
45 stencil = [-q1,0,q1];
46 d = (length(stencil)-1)/2;
47 diags = -d:d;
48 Q = stripeMatrix(stencil, diags, m);
45 49
46 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); 50 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2));
47 51
48 52
49 e_1=zeros(m,1);e_1(1)=1; 53 e_1=sparse(m,1);e_1(1)=1;
50 e_m=zeros(m,1);e_m(m)=1; 54 e_m=sparse(m,1);e_m(m)=1;
51 55
52 56
53 D1=HI*(Q-1/2*e_1*e_1'+1/2*e_m*e_m') ; 57 D1=H\(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ;
54 58
55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56 60
57 61
58 62
59 % Second derivative, 1st order accurate at first 6 boundary points 63 % Second derivative, 1st order accurate at first 6 boundary points
60 m1=-1;m0=2; 64 % m1=-1;m0=2;
61 M=m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);M(1,1)=1;M(m,m)=1; 65 % % M=m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);M(1,1)=1;M(m,m)=1;
62 M=M/h; 66 % stencil = [m2,m1,m0,m1,m2];
67 % d = (length(stencil)-1)/2;
68 % diags = -d:d;
69 % M = stripeMatrix(stencil, diags, m);
70 % M=M/h;
63 71
64 S_U=[-1 1]/h; 72 S_U=[-1 1]/h;
65 S_1=zeros(1,m); 73 S_1=sparse(1,m);
66 S_1(1:2)=S_U; 74 S_1(1:2)=S_U;
67 S_m=zeros(1,m); 75 S_m=sparse(1,m);
68 76
69 S_m(m-1:m)=fliplr(-S_U); 77 S_m(m-1:m)=fliplr(-S_U);
70 78
71 D2=HI*(-M-e_1*S_1+e_m*S_m); 79 % D2=H\(-M-e_1*S_1+e_m*S_m);
72 80
73 81
74 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
75 83
76 84
77 85
78 % Third derivative, 1st order accurate at first 6 boundary points 86 % Third derivative, 1st order accurate at first 6 boundary points
79 87
80 q2=1/2;q1=-1; 88 % q2=1/2;q1=-1;
81 Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); 89 % % Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1));
90 % stencil = [-q2,-q1,0,q1,q2];
91 % d = (length(stencil)-1)/2;
92 % diags = -d:d;
93 % Q3 = stripeMatrix(stencil, diags, m);
82 94
83 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); 95 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3));
84 96
85 97
86 Q3_U = [0 -0.2e1 / 0.5e1 0.3e1 / 0.10e2 0.1e1 / 0.10e2; 0.2e1 / 0.5e1 0 -0.7e1 / 0.10e2 0.3e1 / 0.10e2; -0.3e1 / 0.10e2 0.7e1 / 0.10e2 0 -0.9e1 / 0.10e2; -0.1e1 / 0.10e2 -0.3e1 / 0.10e2 0.9e1 / 0.10e2 0;]; 98 % Q3_U = [0 -0.2e1 / 0.5e1 0.3e1 / 0.10e2 0.1e1 / 0.10e2; 0.2e1 / 0.5e1 0 -0.7e1 / 0.10e2 0.3e1 / 0.10e2; -0.3e1 / 0.10e2 0.7e1 / 0.10e2 0 -0.9e1 / 0.10e2; -0.1e1 / 0.10e2 -0.3e1 / 0.10e2 0.9e1 / 0.10e2 0;];
87 Q3(1:4,1:4)=Q3_U; 99 % Q3(1:4,1:4)=Q3_U;
88 Q3(m-3:m,m-3:m)=flipud( fliplr( -Q3_U ) ); 100 % Q3(m-3:m,m-3:m)=rot90( -Q3_U ,2 );
89 Q3=Q3/h^2; 101 % Q3=Q3/h^2;
90 102
91 103
92 104
93 S2_U=[1 -2 1;]/h^2; 105 S2_U=[1 -2 1;]/h^2;
94 S2_1=zeros(1,m); 106 S2_1=sparse(1,m);
95 S2_1(1:3)=S2_U; 107 S2_1(1:3)=S2_U;
96 S2_m=zeros(1,m); 108 S2_m=sparse(1,m);
97 S2_m(m-2:m)=fliplr(S2_U); 109 S2_m(m-2:m)=fliplr(S2_U);
98 110
99 111
100 112
101 D3=HI*(Q3 - e_1*S2_1 + e_m*S2_m +1/2*S_1'*S_1 -1/2*S_m'*S_m ) ; 113 % D3=H\(Q3 - e_1*S2_1 + e_m*S2_m +1/2*(S_1'*S_1) -1/2*(S_m'*S_m) ) ;
102 114
103 % Fourth derivative, 0th order accurate at first 6 boundary points (still 115 % Fourth derivative, 0th order accurate at first 6 boundary points (still
104 % yield 4th order convergence if stable: for example u_tt=-u_xxxx 116 % yield 4th order convergence if stable: for example u_tt=-u_xxxx
105 117
106 m2=1;m1=-4;m0=6; 118 m2=1;m1=-4;m0=6;
110 122
111 M4_U=[0.4e1 / 0.5e1 -0.7e1 / 0.5e1 0.2e1 / 0.5e1 0.1e1 / 0.5e1; -0.7e1 / 0.5e1 0.16e2 / 0.5e1 -0.11e2 / 0.5e1 0.2e1 / 0.5e1; 0.2e1 / 0.5e1 -0.11e2 / 0.5e1 0.21e2 / 0.5e1 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;]; 123 M4_U=[0.4e1 / 0.5e1 -0.7e1 / 0.5e1 0.2e1 / 0.5e1 0.1e1 / 0.5e1; -0.7e1 / 0.5e1 0.16e2 / 0.5e1 -0.11e2 / 0.5e1 0.2e1 / 0.5e1; 0.2e1 / 0.5e1 -0.11e2 / 0.5e1 0.21e2 / 0.5e1 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;];
112 124
113 M4(1:4,1:4)=M4_U; 125 M4(1:4,1:4)=M4_U;
114 126
115 M4(m-3:m,m-3:m)=flipud( fliplr( M4_U ) ); 127 M4(m-3:m,m-3:m)=rot90( M4_U ,2 );
116 M4=M4/h^3; 128 M4=M4/h^3;
117 129
118 S3_U=[-1 3 -3 1;]/h^3; 130 S3_U=[-1 3 -3 1;]/h^3;
119 S3_1=zeros(1,m); 131 S3_1=sparse(1,m);
120 S3_1(1:4)=S3_U; 132 S3_1(1:4)=S3_U;
121 S3_m=zeros(1,m); 133 S3_m=sparse(1,m);
122 S3_m(m-3:m)=fliplr(-S3_U); 134 S3_m(m-3:m)=fliplr(-S3_U);
123 135
124 D4=HI*(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m); 136 D4=H\(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m);
125 137
126 138
127 139
128 S_1 = S_1'; 140 S_1 = S_1';
129 S_m = S_m'; 141 S_m = S_m';