Mercurial > repos > public > sbplib
comparison +scheme/Schrodinger2dCurve.m @ 520:f235284e2eb1 feature/quantumTriangles
changed sign in penalty parameter
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Mon, 07 Aug 2017 13:20:48 +0200 |
parents | 0de024556427 |
children | 1157375c678a |
comparison
equal
deleted
inserted
replaced
519:0de024556427 | 520:f235284e2eb1 |
---|---|
123 % D = obj.Ji*(-1/2*(obj.b1*obj.Du-obj.b1_u+obj.Du*obj.b1) - | 123 % D = obj.Ji*(-1/2*(obj.b1*obj.Du-obj.b1_u+obj.Du*obj.b1) - |
124 % 1/2*(obj.b2*obj.Dv - obj.b2_v +obj.Dv*obj.b2) + | 124 % 1/2*(obj.b2*obj.Dv - obj.b2_v +obj.Dv*obj.b2) + |
125 % 1i*obj.c^2*(obj.DUU + obj.DUV + obj.DVU + obj.DVV)); (ols | 125 % 1i*obj.c^2*(obj.DUU + obj.DUV + obj.DVU + obj.DVV)); (ols |
126 % not skew sym disc | 126 % not skew sym disc |
127 | 127 |
128 D = sqrt(obj.Ji)*(-1/2*(obj.b1*obj.Du + obj.Du*obj.b1) - 1/2*(obj.b2*obj.Dv + obj.Dv*obj.b2) + 1i*obj.c^2*(obj.DUU + 0*obj.DUV + 0*obj.DVU + 0*obj.DVV))*sqrt(obj.Ji); | 128 D = sqrt(obj.Ji)*(-1/2*(obj.b1*obj.Du + obj.Du*obj.b1) - 1/2*(obj.b2*obj.Dv + obj.Dv*obj.b2) + 1i*obj.c^2*(obj.DUU + obj.DUV + obj.DVU + obj.DVV))*sqrt(obj.Ji); |
129 end | 129 end |
130 | 130 |
131 | 131 |
132 function [D ]= variable_update(obj,t) | 132 function [D ]= variable_update(obj,t) |
133 % Metric derivatives | 133 % Metric derivatives |
218 | 218 |
219 penalty_parameter_1 = @(t) 1*1i*halfnorm_inv_n*halfnorm_inv_t*F(t)*e'*halfnorm_t*e; | 219 penalty_parameter_1 = @(t) 1*1i*halfnorm_inv_n*halfnorm_inv_t*F(t)*e'*halfnorm_t*e; |
220 penalty_parameter_2 = @(t) halfnorm_inv_n*e*tau2(t); | 220 penalty_parameter_2 = @(t) halfnorm_inv_n*e*tau2(t); |
221 | 221 |
222 closure = @(t) sqrt(obj.Ji)*(obj.c^2 * penalty_parameter_1(t)*e' + penalty_parameter_2(t)*e')*sqrt(obj.Ji); | 222 closure = @(t) sqrt(obj.Ji)*(obj.c^2 * penalty_parameter_1(t)*e' + penalty_parameter_2(t)*e')*sqrt(obj.Ji); |
223 penalty = @(t) -sqrt(obj.Ji)*(obj.c^2 * penalty_parameter_1(t)*e' - penalty_parameter_2(t)*e')*sqrt(obj.Ji); | 223 penalty = @(t) -sqrt(obj.Ji)*(obj.c^2 * penalty_parameter_1(t)*e' + penalty_parameter_2(t)*e')*sqrt(obj.Ji); |
224 | 224 |
225 end | 225 end |
226 | 226 |
227 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | 227 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) |
228 % u denotes the solution in the own domain | 228 % u denotes the solution in the own domain |