Mercurial > repos > public > sbplib
comparison +scheme/LaplaceCurvilinearMin.m @ 1136:eee71789f13b feature/laplace_curvilinear_test
Add LaplaceCurvilinear schemes where the minimum check will be implemented. The Virta scheme will be used for comparison only.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Mon, 10 Jun 2019 10:43:12 +0200 |
parents | |
children | 6bc93c091682 |
comparison
equal
deleted
inserted
replaced
1135:a0c6f060a105 | 1136:eee71789f13b |
---|---|
1 classdef LaplaceCurvilinearMin < scheme.Scheme | |
2 properties | |
3 m % Number of points in each direction, possibly a vector | |
4 h % Grid spacing | |
5 dim % Number of spatial dimensions | |
6 | |
7 grid | |
8 | |
9 order % Order of accuracy for the approximation | |
10 | |
11 a,b % Parameters of the operator | |
12 | |
13 | |
14 % Inner products and operators for physical coordinates | |
15 D % Laplace operator | |
16 H, Hi % Inner product | |
17 e_w, e_e, e_s, e_n | |
18 d_w, d_e, d_s, d_n % Normal derivatives at the boundary | |
19 H_w, H_e, H_s, H_n % Boundary inner products | |
20 Dx, Dy % Physical derivatives | |
21 M % Gradient inner product | |
22 | |
23 % Metric coefficients | |
24 J, Ji | |
25 a11, a12, a22 | |
26 K | |
27 x_u | |
28 x_v | |
29 y_u | |
30 y_v | |
31 s_w, s_e, s_s, s_n % Boundary integral scale factors | |
32 | |
33 % Inner product and operators for logical coordinates | |
34 H_u, H_v % Norms in the x and y directions | |
35 Hi_u, Hi_v | |
36 Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. | |
37 Hiu, Hiv | |
38 du_w, dv_w | |
39 du_e, dv_e | |
40 du_s, dv_s | |
41 du_n, dv_n | |
42 | |
43 % Borrowing constants | |
44 theta_M_u, theta_M_v | |
45 theta_R_u, theta_R_v | |
46 theta_H_u, theta_H_v | |
47 | |
48 % Temporary, only used for nonconforming interfaces but should be removed. | |
49 lambda | |
50 end | |
51 | |
52 methods | |
53 % Implements a*div(b*grad(u)) as a SBP scheme | |
54 % TODO: Implement proper H, it should be the real physical quadrature, the logic quadrature may be but in a separate variable (H_logic?) | |
55 | |
56 function obj = LaplaceCurvilinearMin(g, order, a, b, opSet) | |
57 default_arg('opSet',@sbp.D2Variable); | |
58 default_arg('a', 1); | |
59 default_arg('b', @(x,y) 0*x + 1); | |
60 | |
61 % assert(isa(g, 'grid.Curvilinear')) | |
62 if isa(a, 'function_handle') | |
63 a = grid.evalOn(g, a); | |
64 end | |
65 a = spdiag(a); | |
66 | |
67 if isa(b, 'function_handle') | |
68 b = grid.evalOn(g, b); | |
69 end | |
70 | |
71 % If b is scalar | |
72 if length(b) == 1 | |
73 % b = b*speye(g.N(), g.N()); | |
74 b = b*ones(g.N(), 1); | |
75 end | |
76 b = spdiag(b); | |
77 | |
78 dim = 2; | |
79 m = g.size(); | |
80 m_u = m(1); | |
81 m_v = m(2); | |
82 m_tot = g.N(); | |
83 | |
84 % 1D operators | |
85 ops_u = opSet(m_u, {0, 1}, order); | |
86 ops_v = opSet(m_v, {0, 1}, order); | |
87 | |
88 h_u = ops_u.h; | |
89 h_v = ops_v.h; | |
90 | |
91 I_u = speye(m_u); | |
92 I_v = speye(m_v); | |
93 | |
94 D1_u = ops_u.D1; | |
95 D2_u = ops_u.D2; | |
96 H_u = ops_u.H; | |
97 Hi_u = ops_u.HI; | |
98 e_l_u = ops_u.e_l; | |
99 e_r_u = ops_u.e_r; | |
100 d1_l_u = ops_u.d1_l; | |
101 d1_r_u = ops_u.d1_r; | |
102 | |
103 D1_v = ops_v.D1; | |
104 D2_v = ops_v.D2; | |
105 H_v = ops_v.H; | |
106 Hi_v = ops_v.HI; | |
107 e_l_v = ops_v.e_l; | |
108 e_r_v = ops_v.e_r; | |
109 d1_l_v = ops_v.d1_l; | |
110 d1_r_v = ops_v.d1_r; | |
111 | |
112 | |
113 % Logical operators | |
114 Du = kr(D1_u,I_v); | |
115 Dv = kr(I_u,D1_v); | |
116 obj.Hu = kr(H_u,I_v); | |
117 obj.Hv = kr(I_u,H_v); | |
118 obj.Hiu = kr(Hi_u,I_v); | |
119 obj.Hiv = kr(I_u,Hi_v); | |
120 | |
121 e_w = kr(e_l_u,I_v); | |
122 e_e = kr(e_r_u,I_v); | |
123 e_s = kr(I_u,e_l_v); | |
124 e_n = kr(I_u,e_r_v); | |
125 obj.du_w = kr(d1_l_u,I_v); | |
126 obj.dv_w = (e_w'*Dv)'; | |
127 obj.du_e = kr(d1_r_u,I_v); | |
128 obj.dv_e = (e_e'*Dv)'; | |
129 obj.du_s = (e_s'*Du)'; | |
130 obj.dv_s = kr(I_u,d1_l_v); | |
131 obj.du_n = (e_n'*Du)'; | |
132 obj.dv_n = kr(I_u,d1_r_v); | |
133 | |
134 | |
135 % Metric coefficients | |
136 coords = g.points(); | |
137 x = coords(:,1); | |
138 y = coords(:,2); | |
139 | |
140 x_u = Du*x; | |
141 x_v = Dv*x; | |
142 y_u = Du*y; | |
143 y_v = Dv*y; | |
144 | |
145 J = x_u.*y_v - x_v.*y_u; | |
146 a11 = 1./J .* (x_v.^2 + y_v.^2); | |
147 a12 = -1./J .* (x_u.*x_v + y_u.*y_v); | |
148 a22 = 1./J .* (x_u.^2 + y_u.^2); | |
149 lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); | |
150 | |
151 K = cell(dim, dim); | |
152 K{1,1} = spdiag(y_v./J); | |
153 K{1,2} = spdiag(-y_u./J); | |
154 K{2,1} = spdiag(-x_v./J); | |
155 K{2,2} = spdiag(x_u./J); | |
156 obj.K = K; | |
157 | |
158 obj.x_u = x_u; | |
159 obj.x_v = x_v; | |
160 obj.y_u = y_u; | |
161 obj.y_v = y_v; | |
162 | |
163 % Assemble full operators | |
164 L_12 = spdiag(a12); | |
165 Duv = Du*b*L_12*Dv; | |
166 Dvu = Dv*b*L_12*Du; | |
167 | |
168 Duu = sparse(m_tot); | |
169 Dvv = sparse(m_tot); | |
170 ind = grid.funcToMatrix(g, 1:m_tot); | |
171 | |
172 for i = 1:m_v | |
173 b_a11 = b*a11; | |
174 D = D2_u(b_a11(ind(:,i))); | |
175 p = ind(:,i); | |
176 Duu(p,p) = D; | |
177 end | |
178 | |
179 for i = 1:m_u | |
180 b_a22 = b*a22; | |
181 D = D2_v(b_a22(ind(i,:))); | |
182 p = ind(i,:); | |
183 Dvv(p,p) = D; | |
184 end | |
185 | |
186 | |
187 % Physical operators | |
188 obj.J = spdiag(J); | |
189 obj.Ji = spdiag(1./J); | |
190 | |
191 obj.D = obj.Ji*a*(Duu + Duv + Dvu + Dvv); | |
192 obj.H = obj.J*kr(H_u,H_v); | |
193 obj.Hi = obj.Ji*kr(Hi_u,Hi_v); | |
194 | |
195 obj.e_w = e_w; | |
196 obj.e_e = e_e; | |
197 obj.e_s = e_s; | |
198 obj.e_n = e_n; | |
199 | |
200 %% normal derivatives | |
201 I_w = ind(1,:); | |
202 I_e = ind(end,:); | |
203 I_s = ind(:,1); | |
204 I_n = ind(:,end); | |
205 | |
206 a11_w = spdiag(a11(I_w)); | |
207 a12_w = spdiag(a12(I_w)); | |
208 a11_e = spdiag(a11(I_e)); | |
209 a12_e = spdiag(a12(I_e)); | |
210 a22_s = spdiag(a22(I_s)); | |
211 a12_s = spdiag(a12(I_s)); | |
212 a22_n = spdiag(a22(I_n)); | |
213 a12_n = spdiag(a12(I_n)); | |
214 | |
215 s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2); | |
216 s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2); | |
217 s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2); | |
218 s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2); | |
219 | |
220 obj.d_w = -1*(spdiag(1./s_w)*(a11_w*obj.du_w' + a12_w*obj.dv_w'))'; | |
221 obj.d_e = (spdiag(1./s_e)*(a11_e*obj.du_e' + a12_e*obj.dv_e'))'; | |
222 obj.d_s = -1*(spdiag(1./s_s)*(a22_s*obj.dv_s' + a12_s*obj.du_s'))'; | |
223 obj.d_n = (spdiag(1./s_n)*(a22_n*obj.dv_n' + a12_n*obj.du_n'))'; | |
224 | |
225 obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; | |
226 obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; | |
227 | |
228 %% Boundary inner products | |
229 obj.H_w = H_v*spdiag(s_w); | |
230 obj.H_e = H_v*spdiag(s_e); | |
231 obj.H_s = H_u*spdiag(s_s); | |
232 obj.H_n = H_u*spdiag(s_n); | |
233 | |
234 % Misc. | |
235 obj.m = m; | |
236 obj.h = [h_u h_v]; | |
237 obj.order = order; | |
238 obj.grid = g; | |
239 obj.dim = dim; | |
240 | |
241 obj.a = a; | |
242 obj.b = b; | |
243 obj.a11 = a11; | |
244 obj.a12 = a12; | |
245 obj.a22 = a22; | |
246 obj.s_w = spdiag(s_w); | |
247 obj.s_e = spdiag(s_e); | |
248 obj.s_s = spdiag(s_s); | |
249 obj.s_n = spdiag(s_n); | |
250 | |
251 obj.theta_M_u = h_u*ops_u.borrowing.M.d1; | |
252 obj.theta_M_v = h_v*ops_v.borrowing.M.d1; | |
253 | |
254 obj.theta_R_u = h_u*ops_u.borrowing.R.delta_D; | |
255 obj.theta_R_v = h_v*ops_v.borrowing.R.delta_D; | |
256 | |
257 obj.theta_H_u = h_u*ops_u.borrowing.H11; | |
258 obj.theta_H_v = h_v*ops_v.borrowing.H11; | |
259 | |
260 % Temporary | |
261 obj.lambda = lambda; | |
262 end | |
263 | |
264 | |
265 % Closure functions return the opertors applied to the own doamin to close the boundary | |
266 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
267 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
268 % type is a string specifying the type of boundary condition if there are several. | |
269 % data is a function returning the data that should be applied at the boundary. | |
270 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
271 % neighbour_boundary is a string specifying which boundary to interface to. | |
272 function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) | |
273 default_arg('type','neumann'); | |
274 default_arg('parameter', []); | |
275 | |
276 e = obj.getBoundaryOperator('e', boundary); | |
277 d = obj.getBoundaryOperator('d', boundary); | |
278 H_b = obj.getBoundaryQuadrature(boundary); | |
279 s_b = obj.getBoundaryScaling(boundary); | |
280 [th_H, ~, th_R] = obj.getBoundaryBorrowing(boundary); | |
281 m = obj.getBoundaryNumber(boundary); | |
282 | |
283 K = obj.K; | |
284 J = obj.J; | |
285 Hi = obj.Hi; | |
286 a = obj.a; | |
287 b_b = e'*obj.b*e; | |
288 | |
289 switch type | |
290 % Dirichlet boundary condition | |
291 case {'D','d','dirichlet'} | |
292 tuning = 1.0; | |
293 | |
294 sigma = 0*b_b; | |
295 for i = 1:obj.dim | |
296 sigma = sigma + e'*J*K{i,m}*K{i,m}*e; | |
297 end | |
298 sigma = sigma/s_b; | |
299 tau = tuning*(1/th_R + obj.dim/th_H)*sigma; | |
300 | |
301 closure = a*Hi*d*b_b*H_b*e' ... | |
302 -a*Hi*e*tau*b_b*H_b*e'; | |
303 | |
304 penalty = -a*Hi*d*b_b*H_b ... | |
305 +a*Hi*e*tau*b_b*H_b; | |
306 | |
307 | |
308 % Neumann boundary condition. Note that the penalty is for du/dn and not b*du/dn. | |
309 case {'N','n','neumann'} | |
310 tau1 = -1; | |
311 tau2 = 0; | |
312 tau = (tau1*e + tau2*d)*H_b; | |
313 | |
314 closure = a*Hi*tau*b_b*d'; | |
315 penalty = -a*Hi*tau*b_b; | |
316 | |
317 | |
318 % Unknown, boundary condition | |
319 otherwise | |
320 error('No such boundary condition: type = %s',type); | |
321 end | |
322 end | |
323 | |
324 % type Struct that specifies the interface coupling. | |
325 % Fields: | |
326 % -- tuning: penalty strength, defaults to 1.2 | |
327 % -- interpolation: type of interpolation, default 'none' | |
328 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
329 | |
330 % error('Not implemented') | |
331 | |
332 defaultType.tuning = 1.0; | |
333 defaultType.interpolation = 'none'; | |
334 default_struct('type', defaultType); | |
335 | |
336 switch type.interpolation | |
337 case {'none', ''} | |
338 [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); | |
339 case {'op','OP'} | |
340 [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); | |
341 otherwise | |
342 error('Unknown type of interpolation: %s ', type.interpolation); | |
343 end | |
344 end | |
345 | |
346 function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
347 tuning = type.tuning; | |
348 | |
349 dim = obj.dim; | |
350 % u denotes the solution in the own domain | |
351 % v denotes the solution in the neighbour domain | |
352 u = obj; | |
353 v = neighbour_scheme; | |
354 | |
355 % Boundary operators, u | |
356 e_u = u.getBoundaryOperator('e', boundary); | |
357 d_u = u.getBoundaryOperator('d', boundary); | |
358 s_b_u = u.getBoundaryScaling(boundary); | |
359 [th_H_u, ~, th_R_u] = u.getBoundaryBorrowing(boundary); | |
360 m_u = u.getBoundaryNumber(boundary); | |
361 | |
362 % Coefficients, u | |
363 K_u = u.K; | |
364 J_u = u.J; | |
365 b_b_u = e_u'*u.b*e_u; | |
366 | |
367 % Boundary operators, v | |
368 e_v = v.getBoundaryOperator('e', neighbour_boundary); | |
369 d_v = v.getBoundaryOperator('d', neighbour_boundary); | |
370 s_b_v = v.getBoundaryScaling(neighbour_boundary); | |
371 [th_H_v, ~, th_R_v] = v.getBoundaryBorrowing(neighbour_boundary); | |
372 m_v = v.getBoundaryNumber(neighbour_boundary); | |
373 | |
374 % BUGFIX?!?!? | |
375 if (strcmp(boundary,'s') && strcmp(neighbour_boundary,'e')) || (strcmp(boundary,'e') && strcmp(neighbour_boundary,'s')) | |
376 e_v = fliplr(e_v); | |
377 d_v = fliplr(d_v); | |
378 s_b_v = rot90(s_b_v,2); | |
379 end | |
380 | |
381 % Coefficients, v | |
382 K_v = v.K; | |
383 J_v = v.J; | |
384 b_b_v = e_v'*v.b*e_v; | |
385 | |
386 %--- Penalty strength tau ------------- | |
387 sigma_u = 0*b_b_u; | |
388 sigma_v = 0*b_b_v; | |
389 for i = 1:obj.dim | |
390 sigma_u = sigma_u + e_u'*J_u*K_u{i,m_u}*K_u{i,m_u}*e_u; | |
391 sigma_v = sigma_v + e_v'*J_v*K_v{i,m_v}*K_v{i,m_v}*e_v; | |
392 end | |
393 sigma_u = sigma_u/s_b_u; | |
394 sigma_v = sigma_v/s_b_v; | |
395 | |
396 tau_R_u = 1/th_R_u*sigma_u; | |
397 tau_R_v = 1/th_R_v*sigma_v; | |
398 | |
399 tau_H_u = dim*1/th_H_u*sigma_u; | |
400 tau_H_v = dim*1/th_H_v*sigma_v; | |
401 | |
402 tau = 1/4*tuning*(b_b_u*(tau_R_u + tau_H_u) + b_b_v*(tau_R_v + tau_H_v)); | |
403 %-------------------------------------- | |
404 | |
405 % Operators/coefficients that are only required from this side | |
406 Hi = u.Hi; | |
407 H_b = u.getBoundaryQuadrature(boundary); | |
408 a = u.a; | |
409 | |
410 closure = 1/2*a*Hi*d_u*b_b_u*H_b*e_u' ... | |
411 -1/2*a*Hi*e_u*H_b*b_b_u*d_u' ... | |
412 -a*Hi*e_u*tau*H_b*e_u'; | |
413 | |
414 penalty = -1/2*a*Hi*d_u*b_b_u*H_b*e_v' ... | |
415 -1/2*a*Hi*e_u*H_b*b_b_v*d_v' ... | |
416 +a*Hi*e_u*tau*H_b*e_v'; | |
417 end | |
418 | |
419 function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
420 | |
421 % TODO: Make this work for curvilinear grids | |
422 warning('LaplaceCurvilinear: Non-conforming grid interpolation only works for Cartesian grids.'); | |
423 warning('LaplaceCurvilinear: Non-conforming interface uses Virtas penalty strength'); | |
424 warning('LaplaceCurvilinear: Non-conforming interface assumes that b is constant'); | |
425 | |
426 % User can request special interpolation operators by specifying type.interpOpSet | |
427 default_field(type, 'interpOpSet', @sbp.InterpOpsOP); | |
428 interpOpSet = type.interpOpSet; | |
429 tuning = type.tuning; | |
430 | |
431 | |
432 % u denotes the solution in the own domain | |
433 % v denotes the solution in the neighbour domain | |
434 e_u = obj.getBoundaryOperator('e', boundary); | |
435 d_u = obj.getBoundaryOperator('d', boundary); | |
436 H_b_u = obj.getBoundaryQuadrature(boundary); | |
437 I_u = obj.getBoundaryIndices(boundary); | |
438 [~, gamm_u] = obj.getBoundaryBorrowing(boundary); | |
439 | |
440 e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); | |
441 d_v = neighbour_scheme.getBoundaryOperator('d', neighbour_boundary); | |
442 H_b_v = neighbour_scheme.getBoundaryQuadrature(neighbour_boundary); | |
443 I_v = neighbour_scheme.getBoundaryIndices(neighbour_boundary); | |
444 [~, gamm_v] = neighbour_scheme.getBoundaryBorrowing(neighbour_boundary); | |
445 | |
446 | |
447 % Find the number of grid points along the interface | |
448 m_u = size(e_u, 2); | |
449 m_v = size(e_v, 2); | |
450 | |
451 Hi = obj.Hi; | |
452 a = obj.a; | |
453 | |
454 u = obj; | |
455 v = neighbour_scheme; | |
456 | |
457 b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; | |
458 b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; | |
459 b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; | |
460 b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; | |
461 | |
462 tau_u = -1./(4*b1_u) -1./(4*b2_u); | |
463 tau_v = -1./(4*b1_v) -1./(4*b2_v); | |
464 | |
465 tau_u = tuning * spdiag(tau_u); | |
466 tau_v = tuning * spdiag(tau_v); | |
467 beta_u = tau_v; | |
468 | |
469 % Build interpolation operators | |
470 intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); | |
471 Iu2v = intOps.Iu2v; | |
472 Iv2u = intOps.Iv2u; | |
473 | |
474 closure = a*Hi*e_u*tau_u*H_b_u*e_u' + ... | |
475 a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*Iu2v.good*e_u' + ... | |
476 a*1/2*Hi*d_u*H_b_u*e_u' + ... | |
477 -a*1/2*Hi*e_u*H_b_u*d_u'; | |
478 | |
479 penalty = -a*Hi*e_u*tau_u*H_b_u*Iv2u.good*e_v' + ... | |
480 -a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*e_v' + ... | |
481 -a*1/2*Hi*d_u*H_b_u*Iv2u.good*e_v' + ... | |
482 -a*1/2*Hi*e_u*H_b_u*Iv2u.bad*d_v'; | |
483 | |
484 end | |
485 | |
486 % Returns the boundary operator op for the boundary specified by the string boundary. | |
487 % op -- string | |
488 % boundary -- string | |
489 function o = getBoundaryOperator(obj, op, boundary) | |
490 assertIsMember(op, {'e', 'd'}) | |
491 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
492 | |
493 o = obj.([op, '_', boundary]); | |
494 end | |
495 | |
496 % Returns square boundary quadrature matrix, of dimension | |
497 % corresponding to the number of boundary points | |
498 % | |
499 % boundary -- string | |
500 function H_b = getBoundaryQuadrature(obj, boundary) | |
501 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
502 | |
503 H_b = obj.(['H_', boundary]); | |
504 end | |
505 | |
506 % Returns square boundary quadrature scaling matrix, of dimension | |
507 % corresponding to the number of boundary points | |
508 % | |
509 % boundary -- string | |
510 function s_b = getBoundaryScaling(obj, boundary) | |
511 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
512 | |
513 s_b = obj.(['s_', boundary]); | |
514 end | |
515 | |
516 % Returns the coordinate number corresponding to the boundary | |
517 % | |
518 % boundary -- string | |
519 function m = getBoundaryNumber(obj, boundary) | |
520 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
521 | |
522 switch boundary | |
523 case {'w', 'e'} | |
524 m = 1; | |
525 case {'s', 'n'} | |
526 m = 2; | |
527 end | |
528 end | |
529 | |
530 % Returns the indices of the boundary points in the grid matrix | |
531 % boundary -- string | |
532 function I = getBoundaryIndices(obj, boundary) | |
533 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
534 | |
535 ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); | |
536 switch boundary | |
537 case 'w' | |
538 I = ind(1,:); | |
539 case 'e' | |
540 I = ind(end,:); | |
541 case 's' | |
542 I = ind(:,1)'; | |
543 case 'n' | |
544 I = ind(:,end)'; | |
545 end | |
546 end | |
547 | |
548 % Returns borrowing constant gamma | |
549 % boundary -- string | |
550 function [theta_H, theta_M, theta_R] = getBoundaryBorrowing(obj, boundary) | |
551 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
552 | |
553 switch boundary | |
554 case {'w','e'} | |
555 theta_H = obj.theta_H_u; | |
556 theta_M = obj.theta_M_u; | |
557 theta_R = obj.theta_R_u; | |
558 case {'s','n'} | |
559 theta_H = obj.theta_H_v; | |
560 theta_M = obj.theta_M_v; | |
561 theta_R = obj.theta_R_v; | |
562 end | |
563 end | |
564 | |
565 function N = size(obj) | |
566 N = prod(obj.m); | |
567 end | |
568 end | |
569 end |