Mercurial > repos > public > sbplib
comparison +time/SBPInTimeScaled.m @ 746:e95a0f2f7a8d feature/grids
Add file that was forgotten.
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Wed, 28 Mar 2018 12:51:05 +0200 |
| parents | |
| children | 47e86b5270ad |
comparison
equal
deleted
inserted
replaced
| 745:00eb5db89da5 | 746:e95a0f2f7a8d |
|---|---|
| 1 classdef SBPInTimeScaled < time.Timestepper | |
| 2 % The SBP in time method. | |
| 3 % Implemented for A*v_t = B*v + f(t), v(0) = v0 | |
| 4 % The resulting system of equations is | |
| 5 % M*u_next= K*u_prev_end + f | |
| 6 properties | |
| 7 A,B | |
| 8 f | |
| 9 | |
| 10 k % total time step. | |
| 11 | |
| 12 blockSize % number of points in each block | |
| 13 N % Number of components | |
| 14 | |
| 15 order | |
| 16 nodes | |
| 17 | |
| 18 Mtilde,Ktilde % System matrices | |
| 19 L,U,p,q % LU factorization of M | |
| 20 e_T | |
| 21 | |
| 22 scaling | |
| 23 S, Sinv % Scaling matrices | |
| 24 | |
| 25 % Time state | |
| 26 t | |
| 27 vtilde | |
| 28 n | |
| 29 end | |
| 30 | |
| 31 methods | |
| 32 function obj = SBPInTimeScaled(A, B, f, k, t0, v0, scaling, TYPE, order, blockSize) | |
| 33 default_arg('TYPE','gauss'); | |
| 34 default_arg('f',[]); | |
| 35 | |
| 36 if(strcmp(TYPE,'gauss')) | |
| 37 default_arg('order',4) | |
| 38 default_arg('blockSize',4) | |
| 39 else | |
| 40 default_arg('order', 8); | |
| 41 default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE)); | |
| 42 end | |
| 43 | |
| 44 obj.A = A; | |
| 45 obj.B = B; | |
| 46 obj.scaling = scaling; | |
| 47 | |
| 48 if ~isempty(f) | |
| 49 obj.f = f; | |
| 50 else | |
| 51 obj.f = @(t)sparse(length(v0),1); | |
| 52 end | |
| 53 | |
| 54 obj.k = k; | |
| 55 obj.blockSize = blockSize; | |
| 56 obj.N = length(v0); | |
| 57 | |
| 58 obj.n = 0; | |
| 59 obj.t = t0; | |
| 60 | |
| 61 %==== Build the time discretization matrix =====% | |
| 62 switch TYPE | |
| 63 case 'equidistant' | |
| 64 ops = sbp.D2Standard(blockSize,{0,obj.k},order); | |
| 65 case 'optimal' | |
| 66 ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); | |
| 67 case 'minimal' | |
| 68 ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); | |
| 69 case 'gauss' | |
| 70 ops = sbp.D1Gauss(blockSize,{0,obj.k}); | |
| 71 end | |
| 72 | |
| 73 I = speye(size(A)); | |
| 74 I_t = speye(blockSize,blockSize); | |
| 75 | |
| 76 D1 = kron(ops.D1, I); | |
| 77 HI = kron(ops.HI, I); | |
| 78 e_0 = kron(ops.e_l, I); | |
| 79 e_T = kron(ops.e_r, I); | |
| 80 obj.nodes = ops.x; | |
| 81 | |
| 82 % Convert to form M*w = K*v0 + f(t) | |
| 83 tau = kron(I_t, A) * e_0; | |
| 84 M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B); | |
| 85 | |
| 86 K = HI*tau; | |
| 87 | |
| 88 obj.S = kron(I_t, spdiag(scaling)); | |
| 89 obj.Sinv = kron(I_t, spdiag(1./scaling)); | |
| 90 | |
| 91 obj.Mtilde = obj.Sinv*M*obj.S; | |
| 92 obj.Ktilde = obj.Sinv*K*spdiag(scaling); | |
| 93 obj.e_T = e_T; | |
| 94 | |
| 95 | |
| 96 % LU factorization | |
| 97 [obj.L,obj.U,obj.p,obj.q] = lu(obj.Mtilde, 'vector'); | |
| 98 | |
| 99 obj.vtilde = (1./obj.scaling).*v0; | |
| 100 end | |
| 101 | |
| 102 function [v,t] = getV(obj) | |
| 103 v = obj.scaling.*obj.vtilde; | |
| 104 t = obj.t; | |
| 105 end | |
| 106 | |
| 107 function obj = step(obj) | |
| 108 forcing = zeros(obj.blockSize*obj.N,1); | |
| 109 | |
| 110 for i = 1:obj.blockSize | |
| 111 forcing((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.t + obj.nodes(i)); | |
| 112 end | |
| 113 | |
| 114 RHS = obj.Sinv*forcing + obj.Ktilde*obj.vtilde; | |
| 115 | |
| 116 y = obj.L\RHS(obj.p); | |
| 117 z = obj.U\y; | |
| 118 | |
| 119 w = zeros(size(z)); | |
| 120 w(obj.q) = z; | |
| 121 | |
| 122 obj.vtilde = obj.e_T'*w; | |
| 123 | |
| 124 obj.t = obj.t + obj.k; | |
| 125 obj.n = obj.n + 1; | |
| 126 end | |
| 127 end | |
| 128 | |
| 129 methods(Static) | |
| 130 function N = smallestBlockSize(order,TYPE) | |
| 131 default_arg('TYPE','gauss') | |
| 132 | |
| 133 switch TYPE | |
| 134 case 'gauss' | |
| 135 N = 4; | |
| 136 end | |
| 137 end | |
| 138 end | |
| 139 end |
