Mercurial > repos > public > sbplib
comparison +time/SBPInTimeScaled.m @ 746:e95a0f2f7a8d feature/grids
Add file that was forgotten.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 28 Mar 2018 12:51:05 +0200 |
parents | |
children | 47e86b5270ad |
comparison
equal
deleted
inserted
replaced
745:00eb5db89da5 | 746:e95a0f2f7a8d |
---|---|
1 classdef SBPInTimeScaled < time.Timestepper | |
2 % The SBP in time method. | |
3 % Implemented for A*v_t = B*v + f(t), v(0) = v0 | |
4 % The resulting system of equations is | |
5 % M*u_next= K*u_prev_end + f | |
6 properties | |
7 A,B | |
8 f | |
9 | |
10 k % total time step. | |
11 | |
12 blockSize % number of points in each block | |
13 N % Number of components | |
14 | |
15 order | |
16 nodes | |
17 | |
18 Mtilde,Ktilde % System matrices | |
19 L,U,p,q % LU factorization of M | |
20 e_T | |
21 | |
22 scaling | |
23 S, Sinv % Scaling matrices | |
24 | |
25 % Time state | |
26 t | |
27 vtilde | |
28 n | |
29 end | |
30 | |
31 methods | |
32 function obj = SBPInTimeScaled(A, B, f, k, t0, v0, scaling, TYPE, order, blockSize) | |
33 default_arg('TYPE','gauss'); | |
34 default_arg('f',[]); | |
35 | |
36 if(strcmp(TYPE,'gauss')) | |
37 default_arg('order',4) | |
38 default_arg('blockSize',4) | |
39 else | |
40 default_arg('order', 8); | |
41 default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE)); | |
42 end | |
43 | |
44 obj.A = A; | |
45 obj.B = B; | |
46 obj.scaling = scaling; | |
47 | |
48 if ~isempty(f) | |
49 obj.f = f; | |
50 else | |
51 obj.f = @(t)sparse(length(v0),1); | |
52 end | |
53 | |
54 obj.k = k; | |
55 obj.blockSize = blockSize; | |
56 obj.N = length(v0); | |
57 | |
58 obj.n = 0; | |
59 obj.t = t0; | |
60 | |
61 %==== Build the time discretization matrix =====% | |
62 switch TYPE | |
63 case 'equidistant' | |
64 ops = sbp.D2Standard(blockSize,{0,obj.k},order); | |
65 case 'optimal' | |
66 ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); | |
67 case 'minimal' | |
68 ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); | |
69 case 'gauss' | |
70 ops = sbp.D1Gauss(blockSize,{0,obj.k}); | |
71 end | |
72 | |
73 I = speye(size(A)); | |
74 I_t = speye(blockSize,blockSize); | |
75 | |
76 D1 = kron(ops.D1, I); | |
77 HI = kron(ops.HI, I); | |
78 e_0 = kron(ops.e_l, I); | |
79 e_T = kron(ops.e_r, I); | |
80 obj.nodes = ops.x; | |
81 | |
82 % Convert to form M*w = K*v0 + f(t) | |
83 tau = kron(I_t, A) * e_0; | |
84 M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B); | |
85 | |
86 K = HI*tau; | |
87 | |
88 obj.S = kron(I_t, spdiag(scaling)); | |
89 obj.Sinv = kron(I_t, spdiag(1./scaling)); | |
90 | |
91 obj.Mtilde = obj.Sinv*M*obj.S; | |
92 obj.Ktilde = obj.Sinv*K*spdiag(scaling); | |
93 obj.e_T = e_T; | |
94 | |
95 | |
96 % LU factorization | |
97 [obj.L,obj.U,obj.p,obj.q] = lu(obj.Mtilde, 'vector'); | |
98 | |
99 obj.vtilde = (1./obj.scaling).*v0; | |
100 end | |
101 | |
102 function [v,t] = getV(obj) | |
103 v = obj.scaling.*obj.vtilde; | |
104 t = obj.t; | |
105 end | |
106 | |
107 function obj = step(obj) | |
108 forcing = zeros(obj.blockSize*obj.N,1); | |
109 | |
110 for i = 1:obj.blockSize | |
111 forcing((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.t + obj.nodes(i)); | |
112 end | |
113 | |
114 RHS = obj.Sinv*forcing + obj.Ktilde*obj.vtilde; | |
115 | |
116 y = obj.L\RHS(obj.p); | |
117 z = obj.U\y; | |
118 | |
119 w = zeros(size(z)); | |
120 w(obj.q) = z; | |
121 | |
122 obj.vtilde = obj.e_T'*w; | |
123 | |
124 obj.t = obj.t + obj.k; | |
125 obj.n = obj.n + 1; | |
126 end | |
127 end | |
128 | |
129 methods(Static) | |
130 function N = smallestBlockSize(order,TYPE) | |
131 default_arg('TYPE','gauss') | |
132 | |
133 switch TYPE | |
134 case 'gauss' | |
135 N = 4; | |
136 end | |
137 end | |
138 end | |
139 end |