Mercurial > repos > public > sbplib
comparison +scheme/Wave2dCurve.m @ 337:e070ebd94d9d feature/beams
Updated Wave2dCurve to use the new grid classes.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 21 Oct 2016 12:59:07 +0200 |
parents | f18142c1530b |
children | 85c2fe06d551 |
comparison
equal
deleted
inserted
replaced
336:f36d172e196b | 337:e070ebd94d9d |
---|---|
1 classdef Wave2dCurve < scheme.Scheme | 1 classdef Wave2dCurve < scheme.Scheme |
2 properties | 2 properties |
3 m % Number of points in each direction, possibly a vector | 3 m % Number of points in each direction, possibly a vector |
4 h % Grid spacing | 4 h % Grid spacing |
5 u,v % Grid | 5 |
6 x,y % Values of x and y for each grid point | 6 grid |
7 X,Y % Grid point locations as matrices | 7 |
8 order % Order accuracy for the approximation | 8 order % Order accuracy for the approximation |
9 | 9 |
10 D % non-stabalized scheme operator | 10 D % non-stabalized scheme operator |
11 M % Derivative norm | 11 M % Derivative norm |
12 c | 12 c |
27 gamm_u, gamm_v | 27 gamm_u, gamm_v |
28 lambda | 28 lambda |
29 end | 29 end |
30 | 30 |
31 methods | 31 methods |
32 function obj = Wave2dCurve(m,ti,order,c,opSet) | 32 function obj = Wave2dCurve(g ,order, c, opSet) |
33 default_arg('opSet',@sbp.D2Variable); | 33 default_arg('opSet',@sbp.D2Variable); |
34 default_arg('c', 1); | 34 default_arg('c', 1); |
35 | 35 |
36 if length(m) == 1 | 36 assert(isa(g, 'grid.Curvilinear')) |
37 m = [m m]; | 37 |
38 end | 38 m = g.size(); |
39 | |
40 m_u = m(1); | 39 m_u = m(1); |
41 m_v = m(2); | 40 m_v = m(2); |
42 m_tot = m_u*m_v; | 41 m_tot = g.N(); |
43 | 42 |
44 [u, h_u] = util.get_grid(0, 1, m_u); | 43 h = g.scaling(); |
45 [v, h_v] = util.get_grid(0, 1, m_v); | 44 h_u = h(1); |
46 | 45 h_v = h(2); |
47 | 46 |
48 % Operators | 47 % Operators |
49 ops_u = opSet(m_u, {0, 1}, order); | 48 ops_u = opSet(m_u, {0, 1}, order); |
50 ops_v = opSet(m_v, {0, 1}, order); | 49 ops_v = opSet(m_v, {0, 1}, order); |
51 | 50 |
52 I_u = speye(m_u); | 51 I_u = speye(m_u); |
53 I_v = speye(m_v); | 52 I_v = speye(m_v); |
54 | 53 |
55 D1_u = sparse(ops_u.D1); | 54 D1_u = ops_u.D1; |
56 D2_u = ops_u.D2; | 55 D2_u = ops_u.D2; |
57 H_u = sparse(ops_u.H); | 56 H_u = ops_u.H; |
58 Hi_u = sparse(ops_u.HI); | 57 Hi_u = ops_u.HI; |
59 % M_u = sparse(ops_u.M); | 58 e_l_u = ops_u.e_l; |
60 e_l_u = sparse(ops_u.e_l); | 59 e_r_u = ops_u.e_r; |
61 e_r_u = sparse(ops_u.e_r); | 60 d1_l_u = ops_u.d1_l; |
62 d1_l_u = sparse(ops_u.d1_l); | 61 d1_r_u = ops_u.d1_r; |
63 d1_r_u = sparse(ops_u.d1_r); | 62 |
64 | 63 D1_v = ops_v.D1; |
65 D1_v = sparse(ops_v.D1); | |
66 D2_v = ops_v.D2; | 64 D2_v = ops_v.D2; |
67 H_v = sparse(ops_v.H); | 65 H_v = ops_v.H; |
68 Hi_v = sparse(ops_v.HI); | 66 Hi_v = ops_v.HI; |
69 % M_v = sparse(ops_v.M); | 67 e_l_v = ops_v.e_l; |
70 e_l_v = sparse(ops_v.e_l); | 68 e_r_v = ops_v.e_r; |
71 e_r_v = sparse(ops_v.e_r); | 69 d1_l_v = ops_v.d1_l; |
72 d1_l_v = sparse(ops_v.d1_l); | 70 d1_r_v = ops_v.d1_r; |
73 d1_r_v = sparse(ops_v.d1_r); | 71 |
72 Du = kr(D1_u,I_v); | |
73 Dv = kr(I_u,D1_v); | |
74 | 74 |
75 % Metric derivatives | 75 % Metric derivatives |
76 [X,Y] = ti.map(u,v); | 76 coords = g.points(); |
77 | 77 x = coords(:,1); |
78 [x_u,x_v] = gridDerivatives(X,D1_u,D1_v); | 78 y = coords(:,2); |
79 [y_u,y_v] = gridDerivatives(Y,D1_u,D1_v); | 79 |
80 | 80 x_u = Du*x; |
81 | 81 x_v = Dv*x; |
82 y_u = Du*y; | |
83 y_v = Dv*y; | |
82 | 84 |
83 J = x_u.*y_v - x_v.*y_u; | 85 J = x_u.*y_v - x_v.*y_u; |
84 a11 = 1./J .* (x_v.^2 + y_v.^2); %% GÖR SOM MATRISER | 86 a11 = 1./J .* (x_v.^2 + y_v.^2); |
85 a12 = -1./J .* (x_u.*x_v + y_u.*y_v); | 87 a12 = -1./J .* (x_u.*x_v + y_u.*y_v); |
86 a22 = 1./J .* (x_u.^2 + y_u.^2); | 88 a22 = 1./J .* (x_u.^2 + y_u.^2); |
87 lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); | 89 lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); |
88 | 90 |
89 dof_order = reshape(1:m_u*m_v,m_v,m_u); | 91 % Assemble full operators |
92 L_12 = spdiags(a12, 0, m_tot, m_tot); | |
93 Duv = Du*L_12*Dv; | |
94 Dvu = Dv*L_12*Du; | |
90 | 95 |
91 Duu = sparse(m_tot); | 96 Duu = sparse(m_tot); |
92 Dvv = sparse(m_tot); | 97 Dvv = sparse(m_tot); |
98 ind = grid.funcToMatrix(g, 1:m_tot); | |
93 | 99 |
94 for i = 1:m_v | 100 for i = 1:m_v |
95 D = D2_u(a11(i,:)); | 101 D = D2_u(a11(ind(:,i))); |
96 p = dof_order(i,:); | 102 p = ind(:,i); |
97 Duu(p,p) = D; | 103 Duu(p,p) = D; |
98 end | 104 end |
99 | 105 |
100 for i = 1:m_u | 106 for i = 1:m_u |
101 D = D2_v(a22(:,i)); | 107 D = D2_v(a22(ind(i,:))); |
102 p = dof_order(:,i); | 108 p = ind(i,:); |
103 Dvv(p,p) = D; | 109 Dvv(p,p) = D; |
104 end | 110 end |
105 | |
106 L_12 = spdiags(a12(:),0,m_tot,m_tot); | |
107 Du = kr(D1_u,I_v); | |
108 Dv = kr(I_u,D1_v); | |
109 | |
110 Duv = Du*L_12*Dv; | |
111 Dvu = Dv*L_12*Du; | |
112 | |
113 | |
114 | 111 |
115 obj.H = kr(H_u,H_v); | 112 obj.H = kr(H_u,H_v); |
116 obj.Hi = kr(Hi_u,Hi_v); | 113 obj.Hi = kr(Hi_u,Hi_v); |
117 obj.Hu = kr(H_u,I_v); | 114 obj.Hu = kr(H_u,I_v); |
118 obj.Hv = kr(I_u,H_v); | 115 obj.Hv = kr(I_u,H_v); |
119 obj.Hiu = kr(Hi_u,I_v); | 116 obj.Hiu = kr(Hi_u,I_v); |
120 obj.Hiv = kr(I_u,Hi_v); | 117 obj.Hiv = kr(I_u,Hi_v); |
121 | 118 |
122 % obj.M = kr(M_u,H_v)+kr(H_u,M_v); | |
123 obj.e_w = kr(e_l_u,I_v); | 119 obj.e_w = kr(e_l_u,I_v); |
124 obj.e_e = kr(e_r_u,I_v); | 120 obj.e_e = kr(e_r_u,I_v); |
125 obj.e_s = kr(I_u,e_l_v); | 121 obj.e_s = kr(I_u,e_l_v); |
126 obj.e_n = kr(I_u,e_r_v); | 122 obj.e_n = kr(I_u,e_r_v); |
127 obj.du_w = kr(d1_l_u,I_v); | 123 obj.du_w = kr(d1_l_u,I_v); |
134 obj.dv_n = kr(I_u,d1_r_v); | 130 obj.dv_n = kr(I_u,d1_r_v); |
135 | 131 |
136 obj.m = m; | 132 obj.m = m; |
137 obj.h = [h_u h_v]; | 133 obj.h = [h_u h_v]; |
138 obj.order = order; | 134 obj.order = order; |
139 | 135 obj.grid = g; |
140 | 136 |
141 obj.c = c; | 137 obj.c = c; |
142 obj.J = spdiags(J(:),0,m_tot,m_tot); | 138 obj.J = spdiags(J, 0, m_tot, m_tot); |
143 obj.Ji = spdiags(1./J(:),0,m_tot,m_tot); | 139 obj.Ji = spdiags(1./J, 0, m_tot, m_tot); |
144 obj.a11 = a11; | 140 obj.a11 = a11; |
145 obj.a12 = a12; | 141 obj.a12 = a12; |
146 obj.a22 = a22; | 142 obj.a22 = a22; |
147 obj.D = obj.Ji*c^2*(Duu + Duv + Dvu + Dvv); | 143 obj.D = obj.Ji*c^2*(Duu + Duv + Dvu + Dvv); |
148 obj.u = u; | |
149 obj.v = v; | |
150 obj.X = X; | |
151 obj.Y = Y; | |
152 obj.x = X(:); | |
153 obj.y = Y(:); | |
154 obj.lambda = lambda; | 144 obj.lambda = lambda; |
155 | 145 |
156 obj.gamm_u = h_u*ops_u.borrowing.M.S; | 146 obj.gamm_u = h_u*ops_u.borrowing.M.S; |
157 obj.gamm_v = h_v*ops_v.borrowing.M.S; | 147 obj.gamm_v = h_v*ops_v.borrowing.M.S; |
158 end | 148 end |
163 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | 153 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. |
164 % type is a string specifying the type of boundary condition if there are several. | 154 % type is a string specifying the type of boundary condition if there are several. |
165 % data is a function returning the data that should be applied at the boundary. | 155 % data is a function returning the data that should be applied at the boundary. |
166 % neighbour_scheme is an instance of Scheme that should be interfaced to. | 156 % neighbour_scheme is an instance of Scheme that should be interfaced to. |
167 % neighbour_boundary is a string specifying which boundary to interface to. | 157 % neighbour_boundary is a string specifying which boundary to interface to. |
168 function [closure, penalty] = boundary_condition(obj,boundary,type,data) | 158 function [closure, penalty] = boundary_condition(obj,boundary,type) |
169 default_arg('type','neumann'); | 159 default_arg('type','neumann'); |
170 default_arg('data',0); | |
171 | 160 |
172 [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv] = obj.get_boundary_ops(boundary); | 161 [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv] = obj.get_boundary_ops(boundary); |
173 | 162 |
174 switch type | 163 switch type |
175 % Dirichlet boundary condition | 164 % Dirichlet boundary condition |
188 | 177 |
189 b1 = gamm*u.lambda./u.a11.^2; | 178 b1 = gamm*u.lambda./u.a11.^2; |
190 b2 = gamm*u.lambda./u.a22.^2; | 179 b2 = gamm*u.lambda./u.a22.^2; |
191 | 180 |
192 tau = -1./b1 - 1./b2; | 181 tau = -1./b1 - 1./b2; |
193 tau = tuning * spdiag(tau(:)); | 182 tau = tuning * spdiag(tau); |
194 sig1 = 1/2; | 183 sig1 = 1/2; |
195 | 184 |
196 penalty_parameter_1 = halfnorm_inv_n*(tau + sig1*halfnorm_inv_t*F*e'*halfnorm_t)*e; | 185 penalty_parameter_1 = halfnorm_inv_n*(tau + sig1*halfnorm_inv_t*F*e'*halfnorm_t)*e; |
197 | 186 |
198 closure = obj.Ji*obj.c^2 * penalty_parameter_1*e'; | 187 closure = obj.Ji*obj.c^2 * penalty_parameter_1*e'; |
199 pp = -obj.Ji*obj.c^2 * penalty_parameter_1; | 188 penalty = -obj.Ji*obj.c^2 * penalty_parameter_1; |
200 switch class(data) | |
201 case 'double' | |
202 penalty = pp*data; | |
203 case 'function_handle' | |
204 penalty = @(t)pp*data(t); | |
205 otherwise | |
206 error('Weird data argument!') | |
207 end | |
208 | 189 |
209 | 190 |
210 % Neumann boundary condition | 191 % Neumann boundary condition |
211 case {'N','n','neumann'} | 192 case {'N','n','neumann'} |
212 c = obj.c; | 193 c = obj.c; |
213 | 194 |
214 | |
215 a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); | 195 a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); |
216 a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); | 196 a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); |
217 d = (a_n * d_n' + a_t*d_t')'; | 197 d = (a_n * d_n' + a_t*d_t')'; |
218 | 198 |
219 tau1 = -s; | 199 tau1 = -s; |
220 tau2 = 0; | 200 tau2 = 0; |
221 tau = c.^2 * obj.Ji*(tau1*e + tau2*d); | 201 tau = c.^2 * obj.Ji*(tau1*e + tau2*d); |
222 | 202 |
223 closure = halfnorm_inv*tau*d'; | 203 closure = halfnorm_inv*tau*d'; |
224 | 204 penalty = halfnorm_inv*tau; |
225 pp = halfnorm_inv*tau; | 205 |
226 switch class(data) | |
227 case 'double' | |
228 penalty = pp*data; | |
229 case 'function_handle' | |
230 penalty = @(t)pp*data(t); | |
231 otherwise | |
232 error('Weird data argument!') | |
233 end | |
234 | 206 |
235 % Unknown, boundary condition | 207 % Unknown, boundary condition |
236 otherwise | 208 otherwise |
237 error('No such boundary condition: type = %s',type); | 209 error('No such boundary condition: type = %s',type); |
238 end | 210 end |
261 b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; | 233 b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; |
262 b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; | 234 b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; |
263 b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; | 235 b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; |
264 | 236 |
265 tau = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); | 237 tau = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); |
266 tau = tuning * spdiag(tau(:)); | 238 tau = tuning * spdiag(tau); |
267 sig1 = 1/2; | 239 sig1 = 1/2; |
268 sig2 = -1/2; | 240 sig2 = -1/2; |
269 | 241 |
270 penalty_parameter_1 = halfnorm_inv_u_n*(e_u*tau + sig1*halfnorm_inv_u_t*F_u*e_u'*halfnorm_u_t*e_u); | 242 penalty_parameter_1 = halfnorm_inv_u_n*(e_u*tau + sig1*halfnorm_inv_u_t*F_u*e_u'*halfnorm_u_t*e_u); |
271 penalty_parameter_2 = halfnorm_inv_u_n * sig2 * e_u; | 243 penalty_parameter_2 = halfnorm_inv_u_n * sig2 * e_u; |
277 | 249 |
278 % Ruturns the boundary ops and sign for the boundary specified by the string boundary. | 250 % Ruturns the boundary ops and sign for the boundary specified by the string boundary. |
279 % The right boundary is considered the positive boundary | 251 % The right boundary is considered the positive boundary |
280 % | 252 % |
281 % I -- the indecies of the boundary points in the grid matrix | 253 % I -- the indecies of the boundary points in the grid matrix |
282 function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I] = get_boundary_ops(obj,boundary) | 254 function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I] = get_boundary_ops(obj, boundary) |
283 | 255 |
284 gridMatrix = zeros(obj.m(2),obj.m(1)); | 256 % gridMatrix = zeros(obj.m(2),obj.m(1)); |
285 gridMatrix(:) = 1:numel(gridMatrix); | 257 % gridMatrix(:) = 1:numel(gridMatrix); |
258 | |
259 ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); | |
286 | 260 |
287 switch boundary | 261 switch boundary |
288 case 'w' | 262 case 'w' |
289 e = obj.e_w; | 263 e = obj.e_w; |
290 d_n = obj.du_w; | 264 d_n = obj.du_w; |
291 d_t = obj.dv_w; | 265 d_t = obj.dv_w; |
292 s = -1; | 266 s = -1; |
293 | 267 |
294 I = gridMatrix(:,1); | 268 I = ind(1,:); |
295 coeff_n = obj.a11(I); | 269 coeff_n = obj.a11(I); |
296 coeff_t = obj.a12(I); | 270 coeff_t = obj.a12(I); |
297 case 'e' | 271 case 'e' |
298 e = obj.e_e; | 272 e = obj.e_e; |
299 d_n = obj.du_e; | 273 d_n = obj.du_e; |
300 d_t = obj.dv_e; | 274 d_t = obj.dv_e; |
301 s = 1; | 275 s = 1; |
302 | 276 |
303 I = gridMatrix(:,end); | 277 I = ind(end,:); |
304 coeff_n = obj.a11(I); | 278 coeff_n = obj.a11(I); |
305 coeff_t = obj.a12(I); | 279 coeff_t = obj.a12(I); |
306 case 's' | 280 case 's' |
307 e = obj.e_s; | 281 e = obj.e_s; |
308 d_n = obj.dv_s; | 282 d_n = obj.dv_s; |
309 d_t = obj.du_s; | 283 d_t = obj.du_s; |
310 s = -1; | 284 s = -1; |
311 | 285 |
312 I = gridMatrix(1,:)'; | 286 I = ind(:,1)'; |
313 coeff_n = obj.a22(I); | 287 coeff_n = obj.a22(I); |
314 coeff_t = obj.a12(I); | 288 coeff_t = obj.a12(I); |
315 case 'n' | 289 case 'n' |
316 e = obj.e_n; | 290 e = obj.e_n; |
317 d_n = obj.dv_n; | 291 d_n = obj.dv_n; |
318 d_t = obj.du_n; | 292 d_t = obj.du_n; |
319 s = 1; | 293 s = 1; |
320 | 294 |
321 I = gridMatrix(end,:)'; | 295 I = ind(:,end)'; |
322 coeff_n = obj.a22(I); | 296 coeff_n = obj.a22(I); |
323 coeff_t = obj.a12(I); | 297 coeff_t = obj.a12(I); |
324 otherwise | 298 otherwise |
325 error('No such boundary: boundary = %s',boundary); | 299 error('No such boundary: boundary = %s',boundary); |
326 end | 300 end |
341 | 315 |
342 function N = size(obj) | 316 function N = size(obj) |
343 N = prod(obj.m); | 317 N = prod(obj.m); |
344 end | 318 end |
345 | 319 |
346 end | 320 |
347 | |
348 methods(Static) | |
349 % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u | |
350 % and bound_v of scheme schm_v. | |
351 % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') | |
352 function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) | |
353 [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); | |
354 [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); | |
355 end | |
356 end | 321 end |
357 end | 322 end |