Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_compatible_2.m @ 284:dae8c3a56f5e
Merged in operator_remake (pull request #2)
Operator remake
author | Jonatan Werpers <jonatan.werpers@it.uu.se> |
---|---|
date | Mon, 12 Sep 2016 12:53:02 +0200 |
parents | f7ac3cd6eeaa |
children |
comparison
equal
deleted
inserted
replaced
282:18c023aaf3f7 | 284:dae8c3a56f5e |
---|---|
1 function [H, HI, D1, D4, e_1, e_m, M4, Q, S2_1, S2_m,... | |
2 S3_1, S3_m, S_1, S_m] = d4_compatible_2(m,h) | |
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
4 %%% 4:de ordn. SBP Finita differens %%% | |
5 %%% operatorer framtagna av Ken Mattsson %%% | |
6 %%% %%% | |
7 %%% 6 randpunkter, diagonal norm %%% | |
8 %%% %%% | |
9 %%% Datum: 2013-11-11 %%% | |
10 %%% %%% | |
11 %%% %%% | |
12 %%% H (Normen) %%% | |
13 %%% D1 (approx f?rsta derivatan) %%% | |
14 %%% D2 (approx andra derivatan) %%% | |
15 %%% D3 (approx tredje derivatan) %%% | |
16 %%% D2 (approx fj?rde derivatan) %%% | |
17 %%% %%% | |
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
19 | |
20 % M?ste ange antal punkter (m) och stegl?ngd (h) | |
21 % Notera att dessa opetratorer ?r framtagna f?r att anv?ndas n?r | |
22 % vi har 3de och 4de derivator i v?r PDE | |
23 % I annat fall anv?nd de "traditionella" som har noggrannare | |
24 % randsplutningar f?r D1 och D2 | |
25 | |
26 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, | |
27 % vilket ?r n?dv?ndigt f?r stabilitet | |
28 | |
29 BP = 4; | |
30 if(m<2*BP) | |
31 error(['Operator requires at least ' num2str(2*BP) ' grid points']); | |
32 end | |
33 | |
34 H=speye(m,m);H(1,1)=1/2;H(m,m)=1/2; | |
35 | |
36 | |
37 H=H*h; | |
38 HI=inv(H); | |
39 | |
40 | |
41 % First derivative SBP operator, 1st order accurate at first 6 boundary points | |
42 | |
43 q1=1/2; | |
44 % Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
45 stencil = [-q1,0,q1]; | |
46 d = (length(stencil)-1)/2; | |
47 diags = -d:d; | |
48 Q = stripeMatrix(stencil, diags, m); | |
49 | |
50 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); | |
51 | |
52 | |
53 e_1=sparse(m,1);e_1(1)=1; | |
54 e_m=sparse(m,1);e_m(m)=1; | |
55 | |
56 | |
57 D1=H\(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; | |
58 | |
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
60 | |
61 | |
62 | |
63 % Second derivative, 1st order accurate at first 6 boundary points | |
64 % m1=-1;m0=2; | |
65 % % M=m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);M(1,1)=1;M(m,m)=1; | |
66 % stencil = [m2,m1,m0,m1,m2]; | |
67 % d = (length(stencil)-1)/2; | |
68 % diags = -d:d; | |
69 % M = stripeMatrix(stencil, diags, m); | |
70 % M=M/h; | |
71 | |
72 S_U=[-1 1]/h; | |
73 S_1=sparse(1,m); | |
74 S_1(1:2)=S_U; | |
75 S_m=sparse(1,m); | |
76 | |
77 S_m(m-1:m)=fliplr(-S_U); | |
78 | |
79 % D2=H\(-M-e_1*S_1+e_m*S_m); | |
80 | |
81 | |
82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
83 | |
84 | |
85 | |
86 % Third derivative, 1st order accurate at first 6 boundary points | |
87 | |
88 % q2=1/2;q1=-1; | |
89 % % Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
90 % stencil = [-q2,-q1,0,q1,q2]; | |
91 % d = (length(stencil)-1)/2; | |
92 % diags = -d:d; | |
93 % Q3 = stripeMatrix(stencil, diags, m); | |
94 | |
95 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); | |
96 | |
97 | |
98 % Q3_U = [0 -0.2e1 / 0.5e1 0.3e1 / 0.10e2 0.1e1 / 0.10e2; 0.2e1 / 0.5e1 0 -0.7e1 / 0.10e2 0.3e1 / 0.10e2; -0.3e1 / 0.10e2 0.7e1 / 0.10e2 0 -0.9e1 / 0.10e2; -0.1e1 / 0.10e2 -0.3e1 / 0.10e2 0.9e1 / 0.10e2 0;]; | |
99 % Q3(1:4,1:4)=Q3_U; | |
100 % Q3(m-3:m,m-3:m)=rot90( -Q3_U ,2 ); | |
101 % Q3=Q3/h^2; | |
102 | |
103 | |
104 | |
105 S2_U=[1 -2 1;]/h^2; | |
106 S2_1=sparse(1,m); | |
107 S2_1(1:3)=S2_U; | |
108 S2_m=sparse(1,m); | |
109 S2_m(m-2:m)=fliplr(S2_U); | |
110 | |
111 | |
112 | |
113 % D3=H\(Q3 - e_1*S2_1 + e_m*S2_m +1/2*(S_1'*S_1) -1/2*(S_m'*S_m) ) ; | |
114 | |
115 % Fourth derivative, 0th order accurate at first 6 boundary points (still | |
116 % yield 4th order convergence if stable: for example u_tt=-u_xxxx | |
117 | |
118 m2=1;m1=-4;m0=6; | |
119 M4=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); | |
120 | |
121 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); | |
122 | |
123 M4_U=[0.4e1 / 0.5e1 -0.7e1 / 0.5e1 0.2e1 / 0.5e1 0.1e1 / 0.5e1; -0.7e1 / 0.5e1 0.16e2 / 0.5e1 -0.11e2 / 0.5e1 0.2e1 / 0.5e1; 0.2e1 / 0.5e1 -0.11e2 / 0.5e1 0.21e2 / 0.5e1 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;]; | |
124 | |
125 M4(1:4,1:4)=M4_U; | |
126 | |
127 M4(m-3:m,m-3:m)=rot90( M4_U ,2 ); | |
128 M4=M4/h^3; | |
129 | |
130 S3_U=[-1 3 -3 1;]/h^3; | |
131 S3_1=sparse(1,m); | |
132 S3_1(1:4)=S3_U; | |
133 S3_m=sparse(1,m); | |
134 S3_m(m-3:m)=fliplr(-S3_U); | |
135 | |
136 D4=H\(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m); | |
137 | |
138 | |
139 | |
140 S_1 = S_1'; | |
141 S_m = S_m'; | |
142 S2_1 = S2_1'; | |
143 S2_m = S2_m'; | |
144 S3_1 = S3_1'; | |
145 S3_m = S3_m'; | |
146 | |
147 | |
148 | |
149 | |
150 % L=h*(m-1); | |
151 | |
152 % x1=linspace(0,L,m)'; | |
153 % x2=x1.^2/fac(2); | |
154 % x3=x1.^3/fac(3); | |
155 % x4=x1.^4/fac(4); | |
156 % x5=x1.^5/fac(5); | |
157 | |
158 % x0=x1.^0/fac(1); | |
159 | |
160 | |
161 end |