Mercurial > repos > public > sbplib
comparison +parametrization/dataSpline.m @ 1089:d7f6c10eab13 feature/dataspline
Add function parametrization/dataSpline which accepts data points and returns a Curve object consisting of a spline interpolant with the arclength parametrization.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Thu, 04 Apr 2019 17:57:24 -0700 |
parents | |
children | b4054942e277 |
comparison
equal
deleted
inserted
replaced
1088:acf19ecd1338 | 1089:d7f6c10eab13 |
---|---|
1 % Accepts data points (t_i, f_i) and returns a Curve object, | |
2 % using spline interpolation. | |
3 % The spline curve is parametrized with the arc length parametrization | |
4 % to facilitate better grids. | |
5 % | |
6 % t_data - vector | |
7 % f_data - vector | |
8 % C - curve object | |
9 function C = dataSpline(t_data, f_data) | |
10 | |
11 assert(length(t_data)==length(f_data),'Vectors must be same length'); | |
12 m_data = length(t_data); | |
13 | |
14 % Create spline interpolant | |
15 f = parametrization.Curve.spline(t_data, f_data); | |
16 | |
17 % Reparametrize with a parameter s in [0, 1] | |
18 tmin = min(t_data); | |
19 tmax = max(t_data); | |
20 t = @(s) tmin + s*(tmax-tmin); | |
21 | |
22 % Create parameterized curve | |
23 g = @(s) [t(s); f(t(s))]; | |
24 | |
25 % Compute numerical derivative of curve using twice as many points as in data set | |
26 m = 2*m_data; | |
27 ops = sbp.D2Standard(m, {0, 1}, 6); | |
28 gp = parametrization.Curve.numericalDerivative(g, ops.D1); | |
29 | |
30 % Create curve object | |
31 C = parametrization.Curve(g, gp); | |
32 | |
33 % Reparametrize with arclength parametrization | |
34 C = C.arcLengthParametrization(m_data); | |
35 | |
36 % To avoid nested function calls, evaluate curve and compute final spline. | |
37 tv = linspace(0, 1, m_data); | |
38 gv = C.g(tv); | |
39 g = parametrization.Curve.spline(tv, gv); | |
40 C = parametrization.Curve(g); | |
41 | |
42 end |