Mercurial > repos > public > sbplib
comparison +scheme/Utux.m @ 290:d32f674bcbe5 feature/hypsyst
A first attempt to make a general scheme fo hyperbolic systems
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Fri, 16 Sep 2016 14:51:17 +0200 |
parents | d755816aa0fa |
children | 9b3d7fc61a36 |
comparison
equal
deleted
inserted
replaced
285:70184f6c6cb5 | 290:d32f674bcbe5 |
---|---|
4 h % Grid spacing | 4 h % Grid spacing |
5 x % Grid | 5 x % Grid |
6 order % Order accuracy for the approximation | 6 order % Order accuracy for the approximation |
7 | 7 |
8 H % Discrete norm | 8 H % Discrete norm |
9 M % Derivative norm | |
10 D | 9 D |
11 | 10 |
12 D1 | 11 D1 |
13 Hi | 12 Hi |
14 e_l | 13 e_l |
18 | 17 |
19 | 18 |
20 methods | 19 methods |
21 function obj = Utux(m,xlim,order) | 20 function obj = Utux(m,xlim,order) |
22 default_arg('a',1); | 21 default_arg('a',1); |
23 [x, h] = util.get_grid(xlim{:},m); | 22 |
24 ops = sbp.Ordinary(m,h,order); | 23 %Old operators |
24 % [x, h] = util.get_grid(xlim{:},m); | |
25 %ops = sbp.Ordinary(m,h,order); | |
26 | |
27 ops = sbp.D1Nonequidistant(m,xlim,order); | |
28 % ops = sbp.D2Standard(m,xlim,order); | |
29 | |
30 obj.x=ops.x; | |
25 | 31 |
26 obj.D1 = sparse(ops.derivatives.D1); | 32 obj.D1 = ops.D1; |
27 obj.H = sparse(ops.norms.H); | 33 obj.H = ops.H; |
28 obj.Hi = sparse(ops.norms.HI); | 34 obj.Hi = ops.HI; |
29 obj.M = sparse(ops.norms.M); | 35 |
30 obj.e_l = sparse(ops.boundary.e_1); | 36 obj.e_l = ops.e_l; |
31 obj.e_r = sparse(ops.boundary.e_m); | 37 obj.e_r = ops.e_r; |
32 obj.D=obj.D1; | 38 obj.D=obj.D1; |
33 | 39 |
34 obj.m = m; | 40 obj.m = m; |
35 obj.h = h; | 41 obj.h = ops.h; |
36 obj.order = order; | 42 obj.order = order; |
37 obj.x = x; | 43 obj.x = ops.x; |
38 | 44 |
39 end | 45 end |
40 % Closure functions return the opertors applied to the own doamin to close the boundary | 46 % Closure functions return the opertors applied to the own doamin to close the boundary |
41 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | 47 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. |
42 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | 48 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. |
45 % neighbour_scheme is an instance of Scheme that should be interfaced to. | 51 % neighbour_scheme is an instance of Scheme that should be interfaced to. |
46 % neighbour_boundary is a string specifying which boundary to interface to. | 52 % neighbour_boundary is a string specifying which boundary to interface to. |
47 function [closure, penalty] = boundary_condition(obj,boundary,type,data) | 53 function [closure, penalty] = boundary_condition(obj,boundary,type,data) |
48 default_arg('type','neumann'); | 54 default_arg('type','neumann'); |
49 default_arg('data',0); | 55 default_arg('data',0); |
50 tau = -1*obj.e_l; | 56 tau =-1*obj.e_l; |
51 closure = obj.Hi*tau*obj.e_l'; | 57 closure = obj.Hi*tau*obj.e_l'; |
52 penalty = 0*obj.e_l; | 58 penalty = 0*obj.e_l; |
53 | 59 |
54 end | 60 end |
55 | 61 |