Mercurial > repos > public > sbplib
comparison +time/+rk/butcherTableau.m @ 916:d1c1615bd1a5 feature/timesteppers
Add comment in butcherTableau about rk4-3/8 being irreducible.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Mon, 26 Nov 2018 16:08:54 -0800 |
parents | 8732d6bd9890 |
children | 0344fff87139 |
comparison
equal
deleted
inserted
replaced
889:f5e14e5986b5 | 916:d1c1615bd1a5 |
---|---|
17 c = [0 1 1/2]; | 17 c = [0 1 1/2]; |
18 case "rk4" | 18 case "rk4" |
19 % Standard RK4 | 19 % Standard RK4 |
20 s = 4; | 20 s = 4; |
21 a = zeros(s,s-1); | 21 a = zeros(s,s-1); |
22 a(2,1) = 1/2; | 22 a(2,1) = 1/2; |
23 a(3,1) = 0; a(3,2) = 1/2; | 23 a(3,1) = 0; a(3,2) = 1/2; |
24 a(4,1) = 0; a(4,2) = 0; a(4,3) = 1; | 24 a(4,1) = 0; a(4,2) = 0; a(4,3) = 1; |
25 b = [1/6 1/3 1/3 1/6]; | 25 b = [1/6 1/3 1/3 1/6]; |
26 c = [0, 1/2, 1/2, 1]; | 26 c = [0, 1/2, 1/2, 1]; |
27 case "rk4-3/8" | 27 case "rk4-3/8" |
28 % 3/8 RK4 (Kuttas method). Lower truncation error, more flops | 28 % 3/8 RK4 (Kuttas method). Lower truncation error, more flops. |
29 % Irreducible, unlike standard rk4. | |
29 s = 4; | 30 s = 4; |
30 a = zeros(s,s-1); | 31 a = zeros(s,s-1); |
31 a(2,1) = 1/3; | 32 a(2,1) = 1/3; |
32 a(3,1) = -1/3; a(3,2) = 1; | 33 a(3,1) = -1/3; a(3,2) = 1; |
33 a(4,1) = 1; a(4,2) = -1; a(4,3) = 1; | 34 a(4,1) = 1; a(4,2) = -1; a(4,3) = 1; |
34 b = [1/8 3/8 3/8 1/8]; | 35 b = [1/8 3/8 3/8 1/8]; |
35 c = [0, 1/3, 2/3, 1]; | 36 c = [0, 1/3, 2/3, 1]; |
36 case "rk6" | 37 case "rk6" |
37 % Runge-Kutta 6 from Alshina07 | 38 % Runge-Kutta 6 from Alshina07 |
38 s = 7; | 39 s = 7; |
39 a = zeros(s,s-1); | 40 a = zeros(s,s-1); |
40 a(2,1) = 4/7; | 41 a(2,1) = 4/7; |
41 a(3,1) = 115/112; a(3,2) = -5/16; | 42 a(3,1) = 115/112; a(3,2) = -5/16; |
42 a(4,1) = 589/630; a(4,2) = 5/18; a(4,3) = -16/45; | 43 a(4,1) = 589/630; a(4,2) = 5/18; a(4,3) = -16/45; |
43 a(5,1) = 229/1200 - 29/6000*sqrt(5); a(5,2) = 119/240 - 187/1200*sqrt(5); a(5,3) = -14/75 + 34/375*sqrt(5); a(5,4) = -3/100*sqrt(5); | 44 a(5,1) = 229/1200 - 29/6000*sqrt(5); a(5,2) = 119/240 - 187/1200*sqrt(5); a(5,3) = -14/75 + 34/375*sqrt(5); a(5,4) = -3/100*sqrt(5); |
44 a(6,1) = 71/2400 - 587/12000*sqrt(5); a(6,2) = 187/480 - 391/2400*sqrt(5); a(6,3) = -38/75 + 26/375*sqrt(5); a(6,4) = 27/80 - 3/400*sqrt(5); a(6,5) = (1+sqrt(5))/4; | 45 a(6,1) = 71/2400 - 587/12000*sqrt(5); a(6,2) = 187/480 - 391/2400*sqrt(5); a(6,3) = -38/75 + 26/375*sqrt(5); a(6,4) = 27/80 - 3/400*sqrt(5); a(6,5) = (1+sqrt(5))/4; |
45 a(7,1) = -49/480 + 43/160*sqrt(5); a(7,2) = -425/96 + 51/32*sqrt(5); a(7,3) = 52/15 - 4/5*sqrt(5); a(7,4) = -27/16 + 3/16*sqrt(5); a(7,5) = 5/4 - 3/4*sqrt(5); a(7,6) = 5/2 - 1/2*sqrt(5); | 46 a(7,1) = -49/480 + 43/160*sqrt(5); a(7,2) = -425/96 + 51/32*sqrt(5); a(7,3) = 52/15 - 4/5*sqrt(5); a(7,4) = -27/16 + 3/16*sqrt(5); a(7,5) = 5/4 - 3/4*sqrt(5); a(7,6) = 5/2 - 1/2*sqrt(5); |
46 b = [1/12 0 0 0 5/12 5/12 1/12]; | 47 b = [1/12 0 0 0 5/12 5/12 1/12]; |
47 c = [0, 4/7, 5/7, 6/7, (5-sqrt(5))/10, (5+sqrt(5))/10, 1]; | 48 c = [0, 4/7, 5/7, 6/7, (5-sqrt(5))/10, (5+sqrt(5))/10, 1]; |
48 otherwise | 49 otherwise |
49 error('That Runge-Kutta method is not implemented', method) | 50 error('That Runge-Kutta method is not implemented', method) |
50 end | 51 end |