Mercurial > repos > public > sbplib
comparison +scheme/LaplaceCurvilinearNewCorner.m @ 1065:c2bd7f15da48 feature/laplace_curvilinear_test
Add scheme where only corner points are multiplied by dim. Does not seem to decrease spectral radius much, but is stable.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Thu, 17 Jan 2019 18:57:54 -0800 |
parents | |
children | d64062bed5fb |
comparison
equal
deleted
inserted
replaced
1064:1341c6cea9c1 | 1065:c2bd7f15da48 |
---|---|
1 classdef LaplaceCurvilinearNewCorner < scheme.Scheme | |
2 properties | |
3 m % Number of points in each direction, possibly a vector | |
4 h % Grid spacing | |
5 dim % Number of spatial dimensions | |
6 | |
7 grid | |
8 | |
9 order % Order of accuracy for the approximation | |
10 | |
11 a,b % Parameters of the operator | |
12 | |
13 | |
14 % Inner products and operators for physical coordinates | |
15 D % Laplace operator | |
16 H, Hi % Inner product | |
17 e_w, e_e, e_s, e_n | |
18 d_w, d_e, d_s, d_n % Normal derivatives at the boundary | |
19 H_w, H_e, H_s, H_n % Boundary inner products | |
20 Dx, Dy % Physical derivatives | |
21 M % Gradient inner product | |
22 | |
23 % Metric coefficients | |
24 J, Ji | |
25 a11, a12, a22 | |
26 K | |
27 x_u | |
28 x_v | |
29 y_u | |
30 y_v | |
31 s_w, s_e, s_s, s_n % Boundary integral scale factors | |
32 | |
33 % Inner product and operators for logical coordinates | |
34 H_u, H_v % Norms in the x and y directions | |
35 Hi_u, Hi_v | |
36 Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. | |
37 Hiu, Hiv | |
38 du_w, dv_w | |
39 du_e, dv_e | |
40 du_s, dv_s | |
41 du_n, dv_n | |
42 | |
43 % Borrowing constants | |
44 theta_M_u, theta_M_v | |
45 theta_R_u, theta_R_v | |
46 theta_H_u, theta_H_v | |
47 | |
48 end | |
49 | |
50 methods | |
51 % Implements a*div(b*grad(u)) as a SBP scheme | |
52 % TODO: Implement proper H, it should be the real physical quadrature, the logic quadrature may be but in a separate variable (H_logic?) | |
53 | |
54 function obj = LaplaceCurvilinearNewCorner(g, order, a, b, opSet) | |
55 default_arg('opSet',@sbp.D2Variable); | |
56 default_arg('a', 1); | |
57 default_arg('b', 1); | |
58 | |
59 if b ~=1 | |
60 error('Not implemented yet') | |
61 end | |
62 | |
63 % assert(isa(g, 'grid.Curvilinear')) | |
64 if isa(a, 'function_handle') | |
65 a = grid.evalOn(g, a); | |
66 a = spdiag(a); | |
67 end | |
68 | |
69 dim = 2; | |
70 m = g.size(); | |
71 m_u = m(1); | |
72 m_v = m(2); | |
73 m_tot = g.N(); | |
74 | |
75 h = g.scaling(); | |
76 h_u = h(1); | |
77 h_v = h(2); | |
78 | |
79 | |
80 % 1D operators | |
81 ops_u = opSet(m_u, {0, 1}, order); | |
82 ops_v = opSet(m_v, {0, 1}, order); | |
83 | |
84 I_u = speye(m_u); | |
85 I_v = speye(m_v); | |
86 | |
87 D1_u = ops_u.D1; | |
88 D2_u = ops_u.D2; | |
89 H_u = ops_u.H; | |
90 Hi_u = ops_u.HI; | |
91 e_l_u = ops_u.e_l; | |
92 e_r_u = ops_u.e_r; | |
93 d1_l_u = ops_u.d1_l; | |
94 d1_r_u = ops_u.d1_r; | |
95 | |
96 D1_v = ops_v.D1; | |
97 D2_v = ops_v.D2; | |
98 H_v = ops_v.H; | |
99 Hi_v = ops_v.HI; | |
100 e_l_v = ops_v.e_l; | |
101 e_r_v = ops_v.e_r; | |
102 d1_l_v = ops_v.d1_l; | |
103 d1_r_v = ops_v.d1_r; | |
104 | |
105 | |
106 % Logical operators | |
107 Du = kr(D1_u,I_v); | |
108 Dv = kr(I_u,D1_v); | |
109 obj.Hu = kr(H_u,I_v); | |
110 obj.Hv = kr(I_u,H_v); | |
111 obj.Hiu = kr(Hi_u,I_v); | |
112 obj.Hiv = kr(I_u,Hi_v); | |
113 | |
114 e_w = kr(e_l_u,I_v); | |
115 e_e = kr(e_r_u,I_v); | |
116 e_s = kr(I_u,e_l_v); | |
117 e_n = kr(I_u,e_r_v); | |
118 obj.du_w = kr(d1_l_u,I_v); | |
119 obj.dv_w = (e_w'*Dv)'; | |
120 obj.du_e = kr(d1_r_u,I_v); | |
121 obj.dv_e = (e_e'*Dv)'; | |
122 obj.du_s = (e_s'*Du)'; | |
123 obj.dv_s = kr(I_u,d1_l_v); | |
124 obj.du_n = (e_n'*Du)'; | |
125 obj.dv_n = kr(I_u,d1_r_v); | |
126 | |
127 | |
128 % Metric coefficients | |
129 coords = g.points(); | |
130 x = coords(:,1); | |
131 y = coords(:,2); | |
132 | |
133 x_u = Du*x; | |
134 x_v = Dv*x; | |
135 y_u = Du*y; | |
136 y_v = Dv*y; | |
137 | |
138 J = x_u.*y_v - x_v.*y_u; | |
139 a11 = 1./J .* (x_v.^2 + y_v.^2); | |
140 a12 = -1./J .* (x_u.*x_v + y_u.*y_v); | |
141 a22 = 1./J .* (x_u.^2 + y_u.^2); | |
142 % lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); | |
143 | |
144 K = cell(dim, dim); | |
145 K{1,1} = spdiag(y_v./J); | |
146 K{1,2} = spdiag(-y_u./J); | |
147 K{2,1} = spdiag(-x_v./J); | |
148 K{2,2} = spdiag(x_u./J); | |
149 obj.K = K; | |
150 | |
151 obj.x_u = x_u; | |
152 obj.x_v = x_v; | |
153 obj.y_u = y_u; | |
154 obj.y_v = y_v; | |
155 | |
156 % Assemble full operators | |
157 L_12 = spdiag(a12); | |
158 Duv = Du*L_12*Dv; | |
159 Dvu = Dv*L_12*Du; | |
160 | |
161 Duu = sparse(m_tot); | |
162 Dvv = sparse(m_tot); | |
163 ind = grid.funcToMatrix(g, 1:m_tot); | |
164 | |
165 for i = 1:m_v | |
166 D = D2_u(a11(ind(:,i))); | |
167 p = ind(:,i); | |
168 Duu(p,p) = D; | |
169 end | |
170 | |
171 for i = 1:m_u | |
172 D = D2_v(a22(ind(i,:))); | |
173 p = ind(i,:); | |
174 Dvv(p,p) = D; | |
175 end | |
176 | |
177 | |
178 % Physical operators | |
179 obj.J = spdiag(J); | |
180 obj.Ji = spdiag(1./J); | |
181 | |
182 obj.D = obj.Ji*a*(Duu + Duv + Dvu + Dvv); | |
183 obj.H = obj.J*kr(H_u,H_v); | |
184 obj.Hi = obj.Ji*kr(Hi_u,Hi_v); | |
185 | |
186 obj.e_w = e_w; | |
187 obj.e_e = e_e; | |
188 obj.e_s = e_s; | |
189 obj.e_n = e_n; | |
190 | |
191 %% normal derivatives | |
192 I_w = ind(1,:); | |
193 I_e = ind(end,:); | |
194 I_s = ind(:,1); | |
195 I_n = ind(:,end); | |
196 | |
197 a11_w = spdiag(a11(I_w)); | |
198 a12_w = spdiag(a12(I_w)); | |
199 a11_e = spdiag(a11(I_e)); | |
200 a12_e = spdiag(a12(I_e)); | |
201 a22_s = spdiag(a22(I_s)); | |
202 a12_s = spdiag(a12(I_s)); | |
203 a22_n = spdiag(a22(I_n)); | |
204 a12_n = spdiag(a12(I_n)); | |
205 | |
206 s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2); | |
207 s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2); | |
208 s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2); | |
209 s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2); | |
210 | |
211 obj.d_w = -1*(spdiag(1./s_w)*(a11_w*obj.du_w' + a12_w*obj.dv_w'))'; | |
212 obj.d_e = (spdiag(1./s_e)*(a11_e*obj.du_e' + a12_e*obj.dv_e'))'; | |
213 obj.d_s = -1*(spdiag(1./s_s)*(a22_s*obj.dv_s' + a12_s*obj.du_s'))'; | |
214 obj.d_n = (spdiag(1./s_n)*(a22_n*obj.dv_n' + a12_n*obj.du_n'))'; | |
215 | |
216 obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; | |
217 obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; | |
218 | |
219 %% Boundary inner products | |
220 obj.H_w = H_v*spdiag(s_w); | |
221 obj.H_e = H_v*spdiag(s_e); | |
222 obj.H_s = H_u*spdiag(s_s); | |
223 obj.H_n = H_u*spdiag(s_n); | |
224 | |
225 % Misc. | |
226 obj.m = m; | |
227 obj.h = [h_u h_v]; | |
228 obj.order = order; | |
229 obj.grid = g; | |
230 obj.dim = dim; | |
231 | |
232 obj.a = a; | |
233 obj.b = b; | |
234 obj.a11 = a11; | |
235 obj.a12 = a12; | |
236 obj.a22 = a22; | |
237 % obj.lambda = lambda; | |
238 obj.s_w = spdiag(s_w); | |
239 obj.s_e = spdiag(s_e); | |
240 obj.s_s = spdiag(s_s); | |
241 obj.s_n = spdiag(s_n); | |
242 | |
243 obj.theta_M_u = h_u*ops_u.borrowing.M.d1; | |
244 obj.theta_M_v = h_v*ops_v.borrowing.M.d1; | |
245 | |
246 obj.theta_R_u = h_u*ops_u.borrowing.R.delta_D; | |
247 obj.theta_R_v = h_v*ops_v.borrowing.R.delta_D; | |
248 | |
249 obj.theta_H_u = h_u*ops_u.borrowing.H11; | |
250 obj.theta_H_v = h_v*ops_v.borrowing.H11; | |
251 end | |
252 | |
253 | |
254 % Closure functions return the opertors applied to the own doamin to close the boundary | |
255 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
256 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
257 % type is a string specifying the type of boundary condition if there are several. | |
258 % data is a function returning the data that should be applied at the boundary. | |
259 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
260 % neighbour_boundary is a string specifying which boundary to interface to. | |
261 function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) | |
262 default_arg('type','neumann'); | |
263 default_arg('parameter', []); | |
264 | |
265 [e, d] = obj.getBoundaryOperator({'e', 'd'}, boundary); | |
266 H_b = obj.getBoundaryQuadrature(boundary); | |
267 s_b = obj.getBoundaryScaling(boundary); | |
268 [th_H, th_M, th_R] = obj.getBoundaryBorrowing(boundary); | |
269 m = obj.getBoundaryNumber(boundary); | |
270 | |
271 K = obj.K; | |
272 J = obj.J; | |
273 Hi = obj.Hi; | |
274 a_b = e'*obj.a*e; | |
275 | |
276 switch type | |
277 % Dirichlet boundary condition | |
278 case {'D','d','dirichlet'} | |
279 tuning = 1.0; | |
280 | |
281 sigma = 0; | |
282 for i = 1:obj.dim | |
283 sigma = sigma + e'*J*K{i,m}*K{i,m}*e; | |
284 end | |
285 sigma = sigma/s_b; | |
286 % tau = tuning*(1/th_R + obj.dim/th_H)*sigma; | |
287 | |
288 tau_R = 1/th_R*sigma; | |
289 | |
290 tau_H = 1/th_H*sigma; | |
291 tau_H(1,1) = obj.dim*tau_H(1,1); | |
292 tau_H(end,end) = obj.dim*tau_H(end,end); | |
293 | |
294 tau = tuning*(tau_R + tau_H); | |
295 | |
296 closure = Hi*d*a_b*H_b*e' ... | |
297 -Hi*e*tau*H_b*e'; | |
298 | |
299 penalty = -Hi*d*a_b*H_b ... | |
300 +Hi*e*tau*H_b; | |
301 | |
302 | |
303 % Neumann boundary condition | |
304 case {'N','n','neumann'} | |
305 tau1 = -1; | |
306 tau2 = 0; | |
307 tau = (tau1*e + tau2*d)*H_b; | |
308 | |
309 closure = obj.a*Hi*tau*d'; | |
310 penalty = -obj.a*Hi*tau; | |
311 | |
312 | |
313 % Unknown, boundary condition | |
314 otherwise | |
315 error('No such boundary condition: type = %s',type); | |
316 end | |
317 end | |
318 | |
319 % type Struct that specifies the interface coupling. | |
320 % Fields: | |
321 % -- tuning: penalty strength, defaults to 1.2 | |
322 % -- interpolation: type of interpolation, default 'none' | |
323 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
324 | |
325 error('Not implemented') | |
326 | |
327 defaultType.tuning = 1.2; | |
328 defaultType.interpolation = 'none'; | |
329 default_struct('type', defaultType); | |
330 | |
331 switch type.interpolation | |
332 case {'none', ''} | |
333 [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); | |
334 case {'op','OP'} | |
335 [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); | |
336 otherwise | |
337 error('Unknown type of interpolation: %s ', type.interpolation); | |
338 end | |
339 end | |
340 | |
341 function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
342 tuning = type.tuning; | |
343 | |
344 % u denotes the solution in the own domain | |
345 % v denotes the solution in the neighbour domain | |
346 [e_u, d_u] = obj.getBoundaryOperator({'e', 'd'}, boundary); | |
347 H_b_u = obj.getBoundaryQuadrature(boundary); | |
348 I_u = obj.getBoundaryIndices(boundary); | |
349 gamm_u = obj.getBoundaryBorrowing(boundary); | |
350 | |
351 [e_v, d_v] = neighbour_scheme.getBoundaryOperator({'e', 'd'}, neighbour_boundary); | |
352 H_b_v = neighbour_scheme.getBoundaryQuadrature(neighbour_boundary); | |
353 I_v = neighbour_scheme.getBoundaryIndices(neighbour_boundary); | |
354 gamm_v = neighbour_scheme.getBoundaryBorrowing(neighbour_boundary); | |
355 | |
356 u = obj; | |
357 v = neighbour_scheme; | |
358 | |
359 b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; | |
360 b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; | |
361 b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; | |
362 b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; | |
363 | |
364 tau1 = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); | |
365 tau1 = tuning * spdiag(tau1); | |
366 tau2 = 1/2; | |
367 | |
368 sig1 = -1/2; | |
369 sig2 = 0; | |
370 | |
371 tau = (e_u*tau1 + tau2*d_u)*H_b_u; | |
372 sig = (sig1*e_u + sig2*d_u)*H_b_u; | |
373 | |
374 closure = obj.a*obj.Hi*( tau*e_u' + sig*d_u'); | |
375 penalty = obj.a*obj.Hi*(-tau*e_v' + sig*d_v'); | |
376 end | |
377 | |
378 function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
379 | |
380 % TODO: Make this work for curvilinear grids | |
381 warning('LaplaceCurvilinear: Non-conforming grid interpolation only works for Cartesian grids.'); | |
382 | |
383 % User can request special interpolation operators by specifying type.interpOpSet | |
384 default_field(type, 'interpOpSet', @sbp.InterpOpsOP); | |
385 interpOpSet = type.interpOpSet; | |
386 tuning = type.tuning; | |
387 | |
388 | |
389 % u denotes the solution in the own domain | |
390 % v denotes the solution in the neighbour domain | |
391 [e_u, d_u] = obj.getBoundaryOperator({'e', 'd'}, boundary); | |
392 H_b_u = obj.getBoundaryQuadrature(boundary); | |
393 I_u = obj.getBoundaryIndices(boundary); | |
394 gamm_u = obj.getBoundaryBorrowing(boundary); | |
395 | |
396 [e_v, d_v] = neighbour_scheme.getBoundaryOperator({'e', 'd'}, neighbour_boundary); | |
397 H_b_v = neighbour_scheme.getBoundaryQuadrature(neighbour_boundary); | |
398 I_v = neighbour_scheme.getBoundaryIndices(neighbour_boundary); | |
399 gamm_v = neighbour_scheme.getBoundaryBorrowing(neighbour_boundary); | |
400 | |
401 | |
402 % Find the number of grid points along the interface | |
403 m_u = size(e_u, 2); | |
404 m_v = size(e_v, 2); | |
405 | |
406 Hi = obj.Hi; | |
407 a = obj.a; | |
408 | |
409 u = obj; | |
410 v = neighbour_scheme; | |
411 | |
412 b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; | |
413 b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; | |
414 b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; | |
415 b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; | |
416 | |
417 tau_u = -1./(4*b1_u) -1./(4*b2_u); | |
418 tau_v = -1./(4*b1_v) -1./(4*b2_v); | |
419 | |
420 tau_u = tuning * spdiag(tau_u); | |
421 tau_v = tuning * spdiag(tau_v); | |
422 beta_u = tau_v; | |
423 | |
424 % Build interpolation operators | |
425 intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); | |
426 Iu2v = intOps.Iu2v; | |
427 Iv2u = intOps.Iv2u; | |
428 | |
429 closure = a*Hi*e_u*tau_u*H_b_u*e_u' + ... | |
430 a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*Iu2v.good*e_u' + ... | |
431 a*1/2*Hi*d_u*H_b_u*e_u' + ... | |
432 -a*1/2*Hi*e_u*H_b_u*d_u'; | |
433 | |
434 penalty = -a*Hi*e_u*tau_u*H_b_u*Iv2u.good*e_v' + ... | |
435 -a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*e_v' + ... | |
436 -a*1/2*Hi*d_u*H_b_u*Iv2u.good*e_v' + ... | |
437 -a*1/2*Hi*e_u*H_b_u*Iv2u.bad*d_v'; | |
438 | |
439 end | |
440 | |
441 % Returns the boundary operator op for the boundary specified by the string boundary. | |
442 % op -- string or a cell array of strings | |
443 % boundary -- string | |
444 function varargout = getBoundaryOperator(obj, op, boundary) | |
445 | |
446 if ~iscell(op) | |
447 op = {op}; | |
448 end | |
449 | |
450 for i = 1:numel(op) | |
451 switch op{i} | |
452 case 'e' | |
453 switch boundary | |
454 case 'w' | |
455 e = obj.e_w; | |
456 case 'e' | |
457 e = obj.e_e; | |
458 case 's' | |
459 e = obj.e_s; | |
460 case 'n' | |
461 e = obj.e_n; | |
462 otherwise | |
463 error('No such boundary: boundary = %s',boundary); | |
464 end | |
465 varargout{i} = e; | |
466 | |
467 case 'd' | |
468 switch boundary | |
469 case 'w' | |
470 d = obj.d_w; | |
471 case 'e' | |
472 d = obj.d_e; | |
473 case 's' | |
474 d = obj.d_s; | |
475 case 'n' | |
476 d = obj.d_n; | |
477 otherwise | |
478 error('No such boundary: boundary = %s',boundary); | |
479 end | |
480 varargout{i} = d; | |
481 end | |
482 end | |
483 end | |
484 | |
485 % Returns square boundary quadrature matrix, of dimension | |
486 % corresponding to the number of boundary points | |
487 % | |
488 % boundary -- string | |
489 function H_b = getBoundaryQuadrature(obj, boundary) | |
490 | |
491 switch boundary | |
492 case 'w' | |
493 H_b = obj.H_w; | |
494 case 'e' | |
495 H_b = obj.H_e; | |
496 case 's' | |
497 H_b = obj.H_s; | |
498 case 'n' | |
499 H_b = obj.H_n; | |
500 otherwise | |
501 error('No such boundary: boundary = %s',boundary); | |
502 end | |
503 end | |
504 | |
505 % Returns square boundary quadrature scaling matrix, of dimension | |
506 % corresponding to the number of boundary points | |
507 % | |
508 % boundary -- string | |
509 function s_b = getBoundaryScaling(obj, boundary) | |
510 | |
511 switch boundary | |
512 case 'w' | |
513 s_b = obj.s_w; | |
514 case 'e' | |
515 s_b = obj.s_e; | |
516 case 's' | |
517 s_b = obj.s_s; | |
518 case 'n' | |
519 s_b = obj.s_n; | |
520 otherwise | |
521 error('No such boundary: boundary = %s',boundary); | |
522 end | |
523 end | |
524 | |
525 % Returns the coordinate number corresponding to the boundary | |
526 % | |
527 % boundary -- string | |
528 function m = getBoundaryNumber(obj, boundary) | |
529 | |
530 switch boundary | |
531 case {'w', 'e'} | |
532 m = 1; | |
533 case {'s', 'n'} | |
534 m = 2; | |
535 otherwise | |
536 error('No such boundary: boundary = %s',boundary); | |
537 end | |
538 end | |
539 | |
540 % Returns the indices of the boundary points in the grid matrix | |
541 % boundary -- string | |
542 function I = getBoundaryIndices(obj, boundary) | |
543 ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); | |
544 switch boundary | |
545 case 'w' | |
546 I = ind(1,:); | |
547 case 'e' | |
548 I = ind(end,:); | |
549 case 's' | |
550 I = ind(:,1)'; | |
551 case 'n' | |
552 I = ind(:,end)'; | |
553 otherwise | |
554 error('No such boundary: boundary = %s',boundary); | |
555 end | |
556 end | |
557 | |
558 % Returns borrowing constant gamma | |
559 % boundary -- string | |
560 function [theta_H, theta_M, theta_R] = getBoundaryBorrowing(obj, boundary) | |
561 switch boundary | |
562 case {'w','e'} | |
563 theta_H = obj.theta_H_u; | |
564 theta_M = obj.theta_M_u; | |
565 theta_R = obj.theta_R_u; | |
566 case {'s','n'} | |
567 theta_H = obj.theta_H_v; | |
568 theta_M = obj.theta_M_v; | |
569 theta_R = obj.theta_R_v; | |
570 otherwise | |
571 error('No such boundary: boundary = %s',boundary); | |
572 end | |
573 end | |
574 | |
575 function N = size(obj) | |
576 N = prod(obj.m); | |
577 end | |
578 end | |
579 end |