comparison +scheme/Elastic2dVariable.m @ 813:b374a8aa9246 feature/grids

Correct interface penalty strength in Elastic2dVariable
author Martin Almquist <malmquist@stanford.edu>
date Wed, 08 Aug 2018 14:42:24 -0700
parents 1f6b2fb69225
children 386ef449df51 21394c78c72e
comparison
equal deleted inserted replaced
812:6b83dcb46f54 813:b374a8aa9246
1 classdef Elastic2dVariable < scheme.Scheme 1 classdef Elastic2dVariable < scheme.Scheme
2 2
3 % Discretizes the elastic wave equation: 3 % Discretizes the elastic wave equation:
4 % rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i 4 % rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i
5 % opSet should be cell array of opSets, one per dimension. This 5 % opSet should be cell array of opSets, one per dimension. This
6 % is useful if we have periodic BC in one direction. 6 % is useful if we have periodic BC in one direction.
7 7
8 properties 8 properties
9 m % Number of points in each direction, possibly a vector 9 m % Number of points in each direction, possibly a vector
29 % Traction operators used for BC 29 % Traction operators used for BC
30 T_l, T_r 30 T_l, T_r
31 tau_l, tau_r 31 tau_l, tau_r
32 32
33 H, Hi % Inner products 33 H, Hi % Inner products
34
34 phi % Borrowing constant for (d1 - e^T*D1) from R 35 phi % Borrowing constant for (d1 - e^T*D1) from R
35 gamma % Borrowing constant for d1 from M 36 gamma % Borrowing constant for d1 from M
36 H11 % First element of H 37 H11 % First element of H
38
39 % Borrowing from H, M, and R
40 thH
41 thM
42 thR
43
37 e_l, e_r 44 e_l, e_r
38 d1_l, d1_r % Normal derivatives at the boundary 45 d1_l, d1_r % Normal derivatives at the boundary
39 E % E{i}^T picks out component i 46 E % E{i}^T picks out component i
40 47
41 H_boundary % Boundary inner products 48 H_boundary % Boundary inner products
42 49
43 % Kroneckered norms and coefficients 50 % Kroneckered norms and coefficients
44 RHOi_kron 51 RHOi_kron
45 Hi_kron 52 Hi_kron
82 for i = 1:dim 89 for i = 1:dim
83 beta = ops{i}.borrowing.R.delta_D; 90 beta = ops{i}.borrowing.R.delta_D;
84 obj.H11{i} = ops{i}.borrowing.H11; 91 obj.H11{i} = ops{i}.borrowing.H11;
85 obj.phi{i} = beta/obj.H11{i}; 92 obj.phi{i} = beta/obj.H11{i};
86 obj.gamma{i} = ops{i}.borrowing.M.d1; 93 obj.gamma{i} = ops{i}.borrowing.M.d1;
94
95 % Better names
96 obj.thR{i} = ops{i}.borrowing.R.delta_D;
97 obj.thM{i} = ops{i}.borrowing.M.d1;
98 obj.thH{i} = ops{i}.borrowing.H11;
87 end 99 end
88 100
89 I = cell(dim,1); 101 I = cell(dim,1);
90 D1 = cell(dim,1); 102 D1 = cell(dim,1);
91 D2 = cell(dim,1); 103 D2 = cell(dim,1);
228 % Loop over components 240 % Loop over components
229 for i = 1:dim 241 for i = 1:dim
230 tau_l{j}{i} = sparse(m_tot,dim*m_tot); 242 tau_l{j}{i} = sparse(m_tot,dim*m_tot);
231 tau_r{j}{i} = sparse(m_tot,dim*m_tot); 243 tau_r{j}{i} = sparse(m_tot,dim*m_tot);
232 for k = 1:dim 244 for k = 1:dim
233 T_l{j}{i,k} = ... 245 T_l{j}{i,k} = ...
234 -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})... 246 -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})...
235 -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})... 247 -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})...
236 -d(i,k)*MU*e_l{j}*d1_l{j}'; 248 -d(i,k)*MU*e_l{j}*d1_l{j}';
237 249
238 T_r{j}{i,k} = ... 250 T_r{j}{i,k} = ...
239 d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})... 251 d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})...
240 +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})... 252 +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})...
241 +d(i,k)*MU*e_r{j}*d1_r{j}'; 253 +d(i,k)*MU*e_r{j}*d1_r{j}';
242 254
243 tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; 255 tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}';
244 tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}'; 256 tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}';
245 end 257 end
268 280
269 % Closure functions return the operators applied to the own domain to close the boundary 281 % Closure functions return the operators applied to the own domain to close the boundary
270 % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. 282 % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
271 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. 283 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
272 % bc is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition 284 % bc is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition
273 % on the first component. 285 % on the first component.
274 % data is a function returning the data that should be applied at the boundary. 286 % data is a function returning the data that should be applied at the boundary.
275 % neighbour_scheme is an instance of Scheme that should be interfaced to. 287 % neighbour_scheme is an instance of Scheme that should be interfaced to.
276 % neighbour_boundary is a string specifying which boundary to interface to. 288 % neighbour_boundary is a string specifying which boundary to interface to.
277 function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning) 289 function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning)
278 default_arg('tuning', 1.2); 290 default_arg('tuning', 1.2);
315 327
316 d = @kroneckerDelta; % Kronecker delta 328 d = @kroneckerDelta; % Kronecker delta
317 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta 329 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
318 alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... 330 alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ...
319 + d(i,j)* a_mu_i*MU ... 331 + d(i,j)* a_mu_i*MU ...
320 + db(i,j)*a_mu_ij*MU ); 332 + db(i,j)*a_mu_ij*MU );
321 333
322 % Loop over components that Dirichlet penalties end up on 334 % Loop over components that Dirichlet penalties end up on
323 for i = 1:dim 335 for i = 1:dim
324 C = T{k,i}; 336 C = T{k,i};
325 A = -d(i,k)*alpha(i,j); 337 A = -d(i,k)*alpha(i,j);
326 B = A + C; 338 B = A + C;
327 closure = closure + E{i}*RHOi*Hi*B'*e*H_gamma*(e'*E{k}' ); 339 closure = closure + E{i}*RHOi*Hi*B'*e*H_gamma*(e'*E{k}' );
328 penalty = penalty - E{i}*RHOi*Hi*B'*e*H_gamma; 340 penalty = penalty - E{i}*RHOi*Hi*B'*e*H_gamma;
329 end 341 end
330 342
331 % Free boundary condition 343 % Free boundary condition
332 case {'F','f','Free','free','traction','Traction','t','T'} 344 case {'F','f','Free','free','traction','Traction','t','T'}
333 closure = closure - E{k}*RHOi*Hi*e*H_gamma* (e'*tau{k} ); 345 closure = closure - E{k}*RHOi*Hi*e*H_gamma* (e'*tau{k} );
334 penalty = penalty + E{k}*RHOi*Hi*e*H_gamma; 346 penalty = penalty + E{k}*RHOi*Hi*e*H_gamma;
335 347
336 % Unknown boundary condition 348 % Unknown boundary condition
337 otherwise 349 otherwise
338 error('No such boundary condition: type = %s',type); 350 error('No such boundary condition: type = %s',type);
355 367
356 % Operators and quantities that correspond to the own domain only 368 % Operators and quantities that correspond to the own domain only
357 Hi = obj.Hi; 369 Hi = obj.Hi;
358 RHOi = obj.RHOi; 370 RHOi = obj.RHOi;
359 dim = obj.dim; 371 dim = obj.dim;
360 372
361 %--- Other operators ---- 373 %--- Other operators ----
362 m_tot_u = obj.grid.N(); 374 m_tot_u = obj.grid.N();
363 E = obj.E; 375 E = obj.E;
364 LAMBDA_u = obj.LAMBDA; 376 LAMBDA_u = obj.LAMBDA;
365 MU_u = obj.MU; 377 MU_u = obj.MU;
371 LAMBDA_v = neighbour_scheme.LAMBDA; 383 LAMBDA_v = neighbour_scheme.LAMBDA;
372 MU_v = neighbour_scheme.MU; 384 MU_v = neighbour_scheme.MU;
373 lambda_v = e_v'*LAMBDA_v*e_v; 385 lambda_v = e_v'*LAMBDA_v*e_v;
374 mu_v = e_v'*MU_v*e_v; 386 mu_v = e_v'*MU_v*e_v;
375 %------------------------- 387 %-------------------------
376 388
377 % Borrowing constants 389 % Borrowing constants
378 phi_u = obj.phi{j};
379 h_u = obj.h(j); 390 h_u = obj.h(j);
380 h11_u = obj.H11{j}*h_u; 391 thR_u = obj.thR{j}*h_u;
381 gamma_u = obj.gamma{j}; 392 thM_u = obj.thM{j}*h_u;
382 393 thH_u = obj.thH{j}*h_u;
383 phi_v = neighbour_scheme.phi{j_v}; 394
384 h_v = neighbour_scheme.h(j_v); 395 h_v = neighbour_scheme.h(j_v);
385 h11_v = neighbour_scheme.H11{j_v}*h_v; 396 thR_v = neighbour_scheme.thR{j_v}*h_v;
386 gamma_v = neighbour_scheme.gamma{j_v}; 397 thH_v = neighbour_scheme.thH{j_v}*h_v;
387 398 thM_v = neighbour_scheme.thM{j_v}*h_v;
388 % E > sum_i 1/(2*alpha_ij)*(tau_i)^2 399
389 function [alpha_ii, alpha_ij] = computeAlpha(phi,h,h11,gamma,lambda,mu) 400 % alpha = penalty strength for normal component, beta for tangential
390 th1 = h11/(2*dim); 401 alpha_u = dim*lambda_u/(4*thH_u) + lambda_u/(4*thR_u) + mu_u/(2*thM_u);
391 th2 = h11*phi/2; 402 alpha_v = dim*lambda_v/(4*thH_v) + lambda_v/(4*thR_v) + mu_v/(2*thM_v);
392 th3 = h*gamma; 403 beta_u = mu_u/(2*thH_u) + mu_u/(4*thR_u);
393 a1 = ( (th1 + th2)*th3*lambda + 4*th1*th2*mu ) / (2*th1*th2*th3); 404 beta_v = mu_v/(2*thH_v) + mu_v/(4*thR_v);
394 a2 = ( 16*(th1 + th2)*lambda*mu ) / (th1*th2*th3); 405 alpha = alpha_u + alpha_v;
395 alpha_ii = a1 + sqrt(a2 + a1^2); 406 beta = beta_u + beta_v;
396
397 alpha_ij = mu*(2/h11 + 1/(phi*h11));
398 end
399
400 [alpha_ii_u, alpha_ij_u] = computeAlpha(phi_u,h_u,h11_u,gamma_u,lambda_u,mu_u);
401 [alpha_ii_v, alpha_ij_v] = computeAlpha(phi_v,h_v,h11_v,gamma_v,lambda_v,mu_v);
402 sigma_ii = tuning*(alpha_ii_u + alpha_ii_v)/4;
403 sigma_ij = tuning*(alpha_ij_u + alpha_ij_v)/4;
404 407
405 d = @kroneckerDelta; % Kronecker delta 408 d = @kroneckerDelta; % Kronecker delta
406 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta 409 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
407 sigma = @(i,j) tuning*(d(i,j)*sigma_ii + db(i,j)*sigma_ij); 410 strength = @(i,j) tuning*(d(i,j)*alpha + db(i,j)*beta);
408 411
409 % Preallocate 412 % Preallocate
410 closure = sparse(dim*m_tot_u, dim*m_tot_u); 413 closure = sparse(dim*m_tot_u, dim*m_tot_u);
411 penalty = sparse(dim*m_tot_u, dim*m_tot_v); 414 penalty = sparse(dim*m_tot_u, dim*m_tot_v);
412 415
413 % Loop over components that penalties end up on 416 % Loop over components that penalties end up on
414 for i = 1:dim 417 for i = 1:dim
415 closure = closure - E{i}*RHOi*Hi*e*sigma(i,j)*H_gamma*e'*E{i}'; 418 closure = closure - E{i}*RHOi*Hi*e*strength(i,j)*H_gamma*e'*E{i}';
416 penalty = penalty + E{i}*RHOi*Hi*e*sigma(i,j)*H_gamma*e_v'*E_v{i}'; 419 penalty = penalty + E{i}*RHOi*Hi*e*strength(i,j)*H_gamma*e_v'*E_v{i}';
417 420
418 closure = closure - 1/2*E{i}*RHOi*Hi*e*H_gamma*e'*tau{i}; 421 closure = closure - 1/2*E{i}*RHOi*Hi*e*H_gamma*e'*tau{i};
419 penalty = penalty - 1/2*E{i}*RHOi*Hi*e*H_gamma*e_v'*tau_v{i}; 422 penalty = penalty - 1/2*E{i}*RHOi*Hi*e*H_gamma*e_v'*tau_v{i};
420 423
421 % Loop over components that we have interface conditions on 424 % Loop over components that we have interface conditions on
422 for k = 1:dim 425 for k = 1:dim
423 closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e'*E{k}'; 426 closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e'*E{k}';
424 penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e_v'*E_v{k}'; 427 penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e_v'*E_v{k}';
425 end 428 end
426 end 429 end
427 end 430 end
428 431
429 % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. 432 % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
430 function [j, nj] = get_boundary_number(obj, boundary) 433 function [j, nj] = get_boundary_number(obj, boundary)
492 switch boundary 495 switch boundary
493 case {'w','W','west','West','s','S','south','South'} 496 case {'w','W','west','West','s','S','south','South'}
494 varargout{i} = obj.tau_l{j}; 497 varargout{i} = obj.tau_l{j};
495 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} 498 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
496 varargout{i} = obj.tau_r{j}; 499 varargout{i} = obj.tau_r{j};
497 end 500 end
498 otherwise 501 otherwise
499 error(['No such operator: operator = ' op{i}]); 502 error(['No such operator: operator = ' op{i}]);
500 end 503 end
501 end 504 end
502 505