Mercurial > repos > public > sbplib
comparison +multiblock/DiffOp.m @ 427:a613960a157b feature/quantumTriangles
merged with feature/beams
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Thu, 26 Jan 2017 15:59:25 +0100 |
parents | 30ff8879162e |
children | 225765e345c4 324c927d8b1d |
comparison
equal
deleted
inserted
replaced
426:29944ea7674b | 427:a613960a157b |
---|---|
1 classdef DiffOp < scheme.Scheme | |
2 properties | |
3 grid | |
4 order | |
5 diffOps | |
6 D | |
7 H | |
8 | |
9 blockmatrixDiv | |
10 end | |
11 | |
12 methods | |
13 function obj = DiffOp(doHand, grid, order, doParam) | |
14 % doHand -- may either be a function handle or a cell array of | |
15 % function handles for each grid. The function handle(s) | |
16 % should be on the form do = doHand(grid, order, ...) | |
17 % Additional parameters for each doHand may be provided in | |
18 % the doParam input. | |
19 % grid -- a multiblock grid | |
20 % order -- integer specifying the order of accuracy | |
21 % doParam -- may either be a cell array or a cell array of cell arrays | |
22 % for each block. If it is a cell array with length equal | |
23 % to the number of blocks then each element is sent to the | |
24 % corresponding function handle as extra parameters: | |
25 % doHand(..., doParam{i}{:}) Otherwise doParam is sent as | |
26 % extra parameters to all doHand: doHand(..., doParam{:}) | |
27 default_arg('doParam', []) | |
28 | |
29 [getHand, getParam] = parseInput(doHand, grid, doParam); | |
30 | |
31 nBlocks = grid.nBlocks(); | |
32 | |
33 obj.order = order; | |
34 | |
35 % Create the diffOps for each block | |
36 obj.diffOps = cell(1, nBlocks); | |
37 for i = 1:nBlocks | |
38 h = getHand(i); | |
39 p = getParam(i); | |
40 if ~iscell(p) | |
41 p = {p}; | |
42 end | |
43 obj.diffOps{i} = h(grid.grids{i}, order, p{:}); | |
44 end | |
45 | |
46 | |
47 % Build the norm matrix | |
48 H = cell(nBlocks, nBlocks); | |
49 for i = 1:nBlocks | |
50 H{i,i} = obj.diffOps{i}.H; | |
51 end | |
52 obj.H = blockmatrix.toMatrix(H); | |
53 | |
54 | |
55 % Build the differentiation matrix | |
56 obj.blockmatrixDiv = {grid.Ns, grid.Ns}; | |
57 D = blockmatrix.zero(obj.blockmatrixDiv); | |
58 for i = 1:nBlocks | |
59 D{i,i} = obj.diffOps{i}.D; | |
60 end | |
61 | |
62 for i = 1:nBlocks | |
63 for j = 1:nBlocks | |
64 intf = grid.connections{i,j}; | |
65 if isempty(intf) | |
66 continue | |
67 end | |
68 | |
69 | |
70 [ii, ij] = obj.diffOps{i}.interface(intf{1}, obj.diffOps{j}, intf{2}); | |
71 D{i,i} = D{i,i} + ii; | |
72 D{i,j} = D{i,j} + ij; | |
73 | |
74 [jj, ji] = obj.diffOps{j}.interface(intf{2}, obj.diffOps{i}, intf{1}); | |
75 D{j,j} = D{j,j} + jj; | |
76 D{j,i} = D{j,i} + ji; | |
77 end | |
78 end | |
79 obj.D = blockmatrix.toMatrix(D); | |
80 | |
81 | |
82 function [getHand, getParam] = parseInput(doHand, grid, doParam) | |
83 if ~isa(grid, 'multiblock.Grid') | |
84 error('multiblock:DiffOp:DiffOp:InvalidGrid', 'Requires a multiblock grid.'); | |
85 end | |
86 | |
87 if iscell(doHand) && length(doHand) == grid.nBlocks() | |
88 getHand = @(i)doHand{i}; | |
89 elseif isa(doHand, 'function_handle') | |
90 getHand = @(i)doHand; | |
91 else | |
92 error('multiblock:DiffOp:DiffOp:InvalidGridDoHand', 'doHand must be a function handle or a cell array of length grid.nBlocks'); | |
93 end | |
94 | |
95 if isempty(doParam) | |
96 getParam = @(i){}; | |
97 return | |
98 end | |
99 | |
100 if ~iscell(doParam) | |
101 getParam = @(i)doParam; | |
102 return | |
103 end | |
104 | |
105 % doParam is a non-empty cell-array | |
106 | |
107 if length(doParam) == grid.nBlocks() && all(cellfun(@iscell, doParam)) | |
108 % doParam is a cell-array of cell-arrays | |
109 getParam = @(i)doParam{i}; | |
110 return | |
111 end | |
112 | |
113 getParam = @(i)doParam; | |
114 end | |
115 end | |
116 | |
117 function ops = splitOp(obj, op) | |
118 % Splits a matrix operator into a cell-matrix of matrix operators for | |
119 % each grid. | |
120 ops = sparse2cell(op, obj.NNN); | |
121 end | |
122 | |
123 function op = getBoundaryOperator(obj, op, boundary) | |
124 if iscell(boundary) | |
125 localOpName = [op '_' boundary{2}]; | |
126 blockId = boundary{1}; | |
127 localOp = obj.diffOps{blockId}.(localOpName); | |
128 | |
129 div = {obj.blockmatrixDiv{1}, size(localOp,2)}; | |
130 blockOp = blockmatrix.zero(div); | |
131 blockOp{blockId,1} = localOp; | |
132 op = blockmatrix.toMatrix(blockOp); | |
133 return | |
134 else | |
135 % Boundary är en sträng med en boundary group i. | |
136 end | |
137 end | |
138 | |
139 % Creates the closure and penalty matrix for a given boundary condition, | |
140 % boundary -- the name of the boundary on the form {id,name} where | |
141 % id is the number of a block and name is the name of a | |
142 % boundary of that block example: {1,'s'} or {3,'w'} | |
143 function [closure, penalty] = boundary_condition(obj, boundary, type) | |
144 I = boundary{1}; | |
145 name = boundary{2}; | |
146 | |
147 % Get the closure and penaly matrices | |
148 [blockClosure, blockPenalty] = obj.diffOps{I}.boundary_condition(name, type); | |
149 | |
150 % Expand to matrix for full domain. | |
151 div = obj.blockmatrixDiv; | |
152 if ~iscell(blockClosure) | |
153 temp = blockmatrix.zero(div); | |
154 temp{I,I} = blockClosure; | |
155 closure = blockmatrix.toMatrix(temp); | |
156 else | |
157 for i = 1:length(blockClosure) | |
158 temp = blockmatrix.zero(div); | |
159 temp{I,I} = blockClosure{i}; | |
160 closure{i} = blockmatrix.toMatrix(temp); | |
161 end | |
162 end | |
163 | |
164 div{2} = size(blockPenalty, 2); % Penalty is a column vector | |
165 if ~iscell(blockPenalty) | |
166 p = blockmatrix.zero(div); | |
167 p{I} = blockPenalty; | |
168 penalty = blockmatrix.toMatrix(p); | |
169 else | |
170 for i = 1:length(blockPenalty) | |
171 p = blockmatrix.zero(div); | |
172 p{I} = blockPenalty{i}; | |
173 penalty{i} = blockmatrix.toMatrix(p); | |
174 end | |
175 end | |
176 end | |
177 | |
178 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | |
179 | |
180 end | |
181 | |
182 % Size returns the number of degrees of freedom | |
183 function N = size(obj) | |
184 N = 0; | |
185 for i = 1:length(obj.diffOps) | |
186 N = N + obj.diffOps{i}.size(); | |
187 end | |
188 end | |
189 end | |
190 end |