Mercurial > repos > public > sbplib
comparison +scheme/Hypsyst3d.m @ 423:a2cb0d4f4a02 feature/grids
Merge in default.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 07 Feb 2017 15:47:51 +0100 |
parents | 0fd6561964b0 |
children | feebfca90080 459eeb99130f |
comparison
equal
deleted
inserted
replaced
218:da058ce66876 | 423:a2cb0d4f4a02 |
---|---|
1 classdef Hypsyst3d < scheme.Scheme | |
2 properties | |
3 m % Number of points in each direction, possibly a vector | |
4 n % Size of system | |
5 h % Grid spacing | |
6 x, y, z % Grid | |
7 X, Y, Z% Values of x and y for each grid point | |
8 Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces | |
9 order % Order accuracy for the approximation | |
10 | |
11 D % non-stabalized scheme operator | |
12 A, B, C, E % Symbolic coefficient matrices | |
13 Aevaluated,Bevaluated,Cevaluated, Eevaluated | |
14 | |
15 H % Discrete norm | |
16 Hx, Hy, Hz % Norms in the x, y and z directions | |
17 Hxi,Hyi, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. | |
18 I_x,I_y, I_z, I_N | |
19 e_w, e_e, e_s, e_n, e_b, e_t | |
20 params % Parameters for the coeficient matrice | |
21 end | |
22 | |
23 | |
24 methods | |
25 % Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Cu_z-Eu | |
26 function obj = Hypsyst3d(m, lim, order, A, B,C, E, params,operator) | |
27 default_arg('E', []) | |
28 xlim = lim{1}; | |
29 ylim = lim{2}; | |
30 zlim = lim{3}; | |
31 | |
32 if length(m) == 1 | |
33 m = [m m m]; | |
34 end | |
35 | |
36 obj.A = A; | |
37 obj.B = B; | |
38 obj.C = C; | |
39 obj.E = E; | |
40 m_x = m(1); | |
41 m_y = m(2); | |
42 m_z = m(3); | |
43 obj.params = params; | |
44 | |
45 switch operator | |
46 case 'upwind' | |
47 ops_x = sbp.D1Upwind(m_x,xlim,order); | |
48 ops_y = sbp.D1Upwind(m_y,ylim,order); | |
49 ops_z = sbp.D1Upwind(m_z,zlim,order); | |
50 otherwise | |
51 ops_x = sbp.D2Standard(m_x,xlim,order); | |
52 ops_y = sbp.D2Standard(m_y,ylim,order); | |
53 ops_z = sbp.D2Standard(m_z,zlim,order); | |
54 end | |
55 | |
56 obj.x = ops_x.x; | |
57 obj.y = ops_y.x; | |
58 obj.z = ops_z.x; | |
59 | |
60 obj.X = kr(obj.x,ones(m_y,1),ones(m_z,1)); | |
61 obj.Y = kr(ones(m_x,1),obj.y,ones(m_z,1)); | |
62 obj.Z = kr(ones(m_x,1),ones(m_y,1),obj.z); | |
63 | |
64 obj.Yx = kr(obj.y,ones(m_z,1)); | |
65 obj.Zx = kr(ones(m_y,1),obj.z); | |
66 obj.Xy = kr(obj.x,ones(m_z,1)); | |
67 obj.Zy = kr(ones(m_x,1),obj.z); | |
68 obj.Xz = kr(obj.x,ones(m_y,1)); | |
69 obj.Yz = kr(ones(m_z,1),obj.y); | |
70 | |
71 obj.Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z); | |
72 obj.Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z); | |
73 obj.Cevaluated = obj.evaluateCoefficientMatrix(C, obj.X, obj.Y,obj.Z); | |
74 obj.Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y,obj.Z); | |
75 | |
76 obj.n = length(A(obj.params,0,0,0)); | |
77 | |
78 I_n = speye(obj.n); | |
79 I_x = speye(m_x); | |
80 obj.I_x = I_x; | |
81 I_y = speye(m_y); | |
82 obj.I_y = I_y; | |
83 I_z = speye(m_z); | |
84 obj.I_z = I_z; | |
85 I_N = kr(I_n,I_x,I_y,I_z); | |
86 | |
87 obj.Hxi = kr(I_n, ops_x.HI, I_y,I_z); | |
88 obj.Hx = ops_x.H; | |
89 obj.Hyi = kr(I_n, I_x, ops_y.HI,I_z); | |
90 obj.Hy = ops_y.H; | |
91 obj.Hzi = kr(I_n, I_x,I_y, ops_z.HI); | |
92 obj.Hz = ops_z.H; | |
93 | |
94 obj.e_w = kr(I_n, ops_x.e_l, I_y,I_z); | |
95 obj.e_e = kr(I_n, ops_x.e_r, I_y,I_z); | |
96 obj.e_s = kr(I_n, I_x, ops_y.e_l,I_z); | |
97 obj.e_n = kr(I_n, I_x, ops_y.e_r,I_z); | |
98 obj.e_b = kr(I_n, I_x, I_y, ops_z.e_l); | |
99 obj.e_t = kr(I_n, I_x, I_y, ops_z.e_r); | |
100 | |
101 obj.m = m; | |
102 obj.h = [ops_x.h ops_y.h ops_x.h]; | |
103 obj.order = order; | |
104 | |
105 switch operator | |
106 case 'upwind' | |
107 alphaA = max(abs(eig(A(params,obj.x(end),obj.y(end),obj.z(end))))); | |
108 alphaB = max(abs(eig(B(params,obj.x(end),obj.y(end),obj.z(end))))); | |
109 alphaC = max(abs(eig(C(params,obj.x(end),obj.y(end),obj.z(end))))); | |
110 | |
111 Ap = (obj.Aevaluated+alphaA*I_N)/2; | |
112 Am = (obj.Aevaluated-alphaA*I_N)/2; | |
113 Dpx = kr(I_n, ops_x.Dp, I_y,I_z); | |
114 Dmx = kr(I_n, ops_x.Dm, I_y,I_z); | |
115 obj.D = -Am*Dpx; | |
116 temp = Ap*Dmx; | |
117 obj.D = obj.D-temp; | |
118 clear Ap Am Dpx Dmx | |
119 | |
120 Bp = (obj.Bevaluated+alphaB*I_N)/2; | |
121 Bm = (obj.Bevaluated-alphaB*I_N)/2; | |
122 Dpy = kr(I_n, I_x, ops_y.Dp,I_z); | |
123 Dmy = kr(I_n, I_x, ops_y.Dm,I_z); | |
124 temp = Bm*Dpy; | |
125 obj.D = obj.D-temp; | |
126 temp = Bp*Dmy; | |
127 obj.D = obj.D-temp; | |
128 clear Bp Bm Dpy Dmy | |
129 | |
130 | |
131 Cp = (obj.Cevaluated+alphaC*I_N)/2; | |
132 Cm = (obj.Cevaluated-alphaC*I_N)/2; | |
133 Dpz = kr(I_n, I_x, I_y,ops_z.Dp); | |
134 Dmz = kr(I_n, I_x, I_y,ops_z.Dm); | |
135 | |
136 temp = Cm*Dpz; | |
137 obj.D = obj.D-temp; | |
138 temp = Cp*Dmz; | |
139 obj.D = obj.D-temp; | |
140 clear Cp Cm Dpz Dmz | |
141 obj.D = obj.D-obj.Eevaluated; | |
142 | |
143 case 'standard' | |
144 D1_x = kr(I_n, ops_x.D1, I_y,I_z); | |
145 D1_y = kr(I_n, I_x, ops_y.D1,I_z); | |
146 D1_z = kr(I_n, I_x, I_y,ops_z.D1); | |
147 obj.D = -obj.Aevaluated*D1_x-obj.Bevaluated*D1_y-obj.Cevaluated*D1_z-obj.Eevaluated; | |
148 otherwise | |
149 error('Opperator not supported'); | |
150 end | |
151 end | |
152 | |
153 % Closure functions return the opertors applied to the own doamin to close the boundary | |
154 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
155 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
156 % type is a string specifying the type of boundary condition if there are several. | |
157 % data is a function returning the data that should be applied at the boundary. | |
158 function [closure, penalty] = boundary_condition(obj,boundary,type,L) | |
159 default_arg('type','char'); | |
160 BM = boundary_matrices(obj,boundary); | |
161 switch type | |
162 case{'c','char'} | |
163 [closure,penalty] = boundary_condition_char(obj,BM); | |
164 case{'general'} | |
165 [closure,penalty] = boundary_condition_general(obj,BM,boundary,L); | |
166 otherwise | |
167 error('No such boundary condition') | |
168 end | |
169 end | |
170 | |
171 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | |
172 error('An interface function does not exist yet'); | |
173 end | |
174 | |
175 function N = size(obj) | |
176 N = obj.m; | |
177 end | |
178 | |
179 function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y, Z) | |
180 params = obj.params; | |
181 side = max(length(X),length(Y)); | |
182 if isa(mat,'function_handle') | |
183 [rows,cols] = size(mat(params,0,0,0)); | |
184 matVec = mat(params,X',Y',Z'); | |
185 matVec = sparse(matVec); | |
186 else | |
187 matVec = mat; | |
188 [rows,cols] = size(matVec); | |
189 side = max(length(X),length(Y)); | |
190 cols = cols/side; | |
191 end | |
192 | |
193 ret = cell(rows,cols); | |
194 for ii = 1:rows | |
195 for jj = 1:cols | |
196 ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side)); | |
197 end | |
198 end | |
199 ret = cell2mat(ret); | |
200 end | |
201 | |
202 function [BM] = boundary_matrices(obj,boundary) | |
203 params = obj.params; | |
204 | |
205 switch boundary | |
206 case {'w','W','west'} | |
207 BM.e_ = obj.e_w; | |
208 mat = obj.A; | |
209 BM.boundpos = 'l'; | |
210 BM.Hi = obj.Hxi; | |
211 [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(1),obj.Yx,obj.Zx); | |
212 BM.side = length(obj.Yx); | |
213 case {'e','E','east'} | |
214 BM.e_ = obj.e_e; | |
215 mat = obj.A; | |
216 BM.boundpos = 'r'; | |
217 BM.Hi = obj.Hxi; | |
218 [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(end),obj.Yx,obj.Zx); | |
219 BM.side = length(obj.Yx); | |
220 case {'s','S','south'} | |
221 BM.e_ = obj.e_s; | |
222 mat = obj.B; | |
223 BM.boundpos = 'l'; | |
224 BM.Hi = obj.Hyi; | |
225 [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xy,obj.Y(1),obj.Zy); | |
226 BM.side = length(obj.Xy); | |
227 case {'n','N','north'} | |
228 BM.e_ = obj.e_n; | |
229 mat = obj.B; | |
230 BM.boundpos = 'r'; | |
231 BM.Hi = obj.Hyi; | |
232 [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xy,obj.Y(end),obj.Zy); | |
233 BM.side = length(obj.Xy); | |
234 case{'b','B','Bottom'} | |
235 BM.e_ = obj.e_b; | |
236 mat = obj.C; | |
237 BM.boundpos = 'l'; | |
238 BM.Hi = obj.Hzi; | |
239 [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(1)); | |
240 BM.side = length(obj.Xz); | |
241 case{'t','T','Top'} | |
242 BM.e_ = obj.e_t; | |
243 mat = obj.C; | |
244 BM.boundpos = 'r'; | |
245 BM.Hi = obj.Hzi; | |
246 [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(end)); | |
247 BM.side = length(obj.Xz); | |
248 end | |
249 BM.pos = signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3); | |
250 end | |
251 | |
252 % Characteristic bouyndary consitions | |
253 function [closure, penalty]=boundary_condition_char(obj,BM) | |
254 side = BM.side; | |
255 pos = BM.pos; | |
256 neg = BM.neg; | |
257 zeroval=BM.zeroval; | |
258 V = BM.V; | |
259 Vi = BM.Vi; | |
260 Hi = BM.Hi; | |
261 D = BM.D; | |
262 e_ = BM.e_; | |
263 | |
264 switch BM.boundpos | |
265 case {'l'} | |
266 tau = sparse(obj.n*side,pos); | |
267 Vi_plus = Vi(1:pos,:); | |
268 tau(1:pos,:) = -abs(D(1:pos,1:pos)); | |
269 closure = Hi*e_*V*tau*Vi_plus*e_'; | |
270 penalty = -Hi*e_*V*tau*Vi_plus; | |
271 case {'r'} | |
272 tau = sparse(obj.n*side,neg); | |
273 tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); | |
274 Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); | |
275 closure = Hi*e_*V*tau*Vi_minus*e_'; | |
276 penalty = -Hi*e_*V*tau*Vi_minus; | |
277 end | |
278 end | |
279 | |
280 % General boundary condition in the form Lu=g(x) | |
281 function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L) | |
282 side = BM.side; | |
283 pos = BM.pos; | |
284 neg = BM.neg; | |
285 zeroval=BM.zeroval; | |
286 V = BM.V; | |
287 Vi = BM.Vi; | |
288 Hi = BM.Hi; | |
289 D = BM.D; | |
290 e_ = BM.e_; | |
291 | |
292 switch boundary | |
293 case {'w','W','west'} | |
294 L = obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx); | |
295 case {'e','E','east'} | |
296 L = obj.evaluateCoefficientMatrix(L,obj.x(end),obj.Yx,obj.Zx); | |
297 case {'s','S','south'} | |
298 L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(1),obj.Zy); | |
299 case {'n','N','north'} | |
300 L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy);% General boundary condition in the form Lu=g(x) | |
301 case {'b','B','bottom'} | |
302 L = obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(1)); | |
303 case {'t','T','top'} | |
304 L = obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(end)); | |
305 end | |
306 | |
307 switch BM.boundpos | |
308 case {'l'} | |
309 tau = sparse(obj.n*side,pos); | |
310 Vi_plus = Vi(1:pos,:); | |
311 Vi_minus = Vi(pos+zeroval+1:obj.n*side,:); | |
312 V_plus = V(:,1:pos); | |
313 V_minus = V(:,(pos+zeroval)+1:obj.n*side); | |
314 | |
315 tau(1:pos,:) = -abs(D(1:pos,1:pos)); | |
316 R = -inv(L*V_plus)*(L*V_minus); | |
317 closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; | |
318 penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; | |
319 case {'r'} | |
320 tau = sparse(obj.n*side,neg); | |
321 tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); | |
322 Vi_plus = Vi(1:pos,:); | |
323 Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); | |
324 | |
325 V_plus = V(:,1:pos); | |
326 V_minus = V(:,(pos+zeroval)+1:obj.n*side); | |
327 R = -inv(L*V_minus)*(L*V_plus); | |
328 closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; | |
329 penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; | |
330 end | |
331 end | |
332 | |
333 % Function that diagonalizes a symbolic matrix A as A=V*D*Vi | |
334 % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign | |
335 % [d+ ] | |
336 % D = [ d0 ] | |
337 % [ d-] | |
338 % signVec is a vector specifying the number of possitive, zero and negative eigenvalues of D | |
339 function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,z) | |
340 params = obj.params; | |
341 syms xs ys zs | |
342 [V, D] = eig(mat(params,xs,ys,zs)); | |
343 Vi=inv(V); | |
344 xs = x; | |
345 ys = y; | |
346 zs = z; | |
347 | |
348 | |
349 side = max(length(x),length(y)); | |
350 Dret = zeros(obj.n,side*obj.n); | |
351 Vret = zeros(obj.n,side*obj.n); | |
352 Viret= zeros(obj.n,side*obj.n); | |
353 | |
354 for ii=1:obj.n | |
355 for jj=1:obj.n | |
356 Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); | |
357 Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); | |
358 Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); | |
359 end | |
360 end | |
361 | |
362 D = sparse(Dret); | |
363 V = sparse(Vret); | |
364 Vi = sparse(Viret); | |
365 V = obj.evaluateCoefficientMatrix(V,x,y,z); | |
366 Vi= obj.evaluateCoefficientMatrix(Vi,x,y,z); | |
367 D = obj.evaluateCoefficientMatrix(D,x,y,z); | |
368 DD = diag(D); | |
369 | |
370 poseig = (DD>0); | |
371 zeroeig = (DD==0); | |
372 negeig = (DD<0); | |
373 | |
374 D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); | |
375 V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; | |
376 Vi= [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; | |
377 signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; | |
378 end | |
379 end | |
380 end |