Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d1_noneq_minimal_4.m @ 423:a2cb0d4f4a02 feature/grids
Merge in default.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 07 Feb 2017 15:47:51 +0100 |
parents | f7ac3cd6eeaa |
children | 4cb627c7fb90 |
comparison
equal
deleted
inserted
replaced
218:da058ce66876 | 423:a2cb0d4f4a02 |
---|---|
1 function [D1,H,x,h] = d1_noneq_minimal_4(N,L) | |
2 | |
3 % L: Domain length | |
4 % N: Number of grid points | |
5 if(nargin < 2) | |
6 L = 1; | |
7 end | |
8 | |
9 if(N<6) | |
10 error('Operator requires at least 6 grid points'); | |
11 end | |
12 | |
13 % BP: Number of boundary points | |
14 % m: Number of nonequidistant spacings | |
15 % order: Accuracy of interior stencil | |
16 BP = 3; | |
17 m = 1; | |
18 order = 4; | |
19 | |
20 %%%% Non-equidistant grid points %%%%% | |
21 x0 = 0.0000000000000e+00; | |
22 x1 = 7.7122987842562e-01; | |
23 x2 = 1.7712298784256e+00; | |
24 x3 = 2.7712298784256e+00; | |
25 | |
26 xb = sparse(m+1,1); | |
27 for i = 0:m | |
28 xb(i+1) = eval(['x' num2str(i)]); | |
29 end | |
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
31 | |
32 %%%% Compute h %%%%%%%%%% | |
33 h = L/(2*xb(end) + N-1-2*m); | |
34 %%%%%%%%%%%%%%%%%%%%%%%%% | |
35 | |
36 %%%% Define grid %%%%%%%% | |
37 x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; | |
38 %%%%%%%%%%%%%%%%%%%%%%%%% | |
39 | |
40 %%%% Norm matrix %%%%%%%% | |
41 P = sparse(BP,1); | |
42 %#ok<*NASGU> | |
43 P0 = 2.6864248295847e-01; | |
44 P1 = 1.0094667153500e+00; | |
45 P2 = 9.9312068011715e-01; | |
46 | |
47 for i = 0:BP-1 | |
48 P(i+1) = eval(['P' num2str(i)]); | |
49 end | |
50 | |
51 H = ones(N,1); | |
52 H(1:BP) = P; | |
53 H(end-BP+1:end) = flip(P); | |
54 H = spdiags(h*H,0,N,N); | |
55 %%%%%%%%%%%%%%%%%%%%%%%%% | |
56 | |
57 %%%% Q matrix %%%%%%%%%%% | |
58 | |
59 % interior stencil | |
60 switch order | |
61 case 2 | |
62 d = [-1/2,0,1/2]; | |
63 case 4 | |
64 d = [1/12,-2/3,0,2/3,-1/12]; | |
65 case 6 | |
66 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; | |
67 case 8 | |
68 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; | |
69 case 10 | |
70 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; | |
71 case 12 | |
72 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; | |
73 end | |
74 d = repmat(d,N,1); | |
75 Q = spdiags(d,-order/2:order/2,N,N); | |
76 | |
77 % Boundaries | |
78 Q0_0 = -5.0000000000000e-01; | |
79 Q0_1 = 6.1697245625434e-01; | |
80 Q0_2 = -1.1697245625434e-01; | |
81 Q0_3 = 0.0000000000000e+00; | |
82 Q0_4 = 0.0000000000000e+00; | |
83 Q1_0 = -6.1697245625434e-01; | |
84 Q1_1 = 0.0000000000000e+00; | |
85 Q1_2 = 7.0030578958767e-01; | |
86 Q1_3 = -8.3333333333333e-02; | |
87 Q1_4 = 0.0000000000000e+00; | |
88 Q2_0 = 1.1697245625434e-01; | |
89 Q2_1 = -7.0030578958767e-01; | |
90 Q2_2 = 0.0000000000000e+00; | |
91 Q2_3 = 6.6666666666667e-01; | |
92 Q2_4 = -8.3333333333333e-02; | |
93 for i = 1:BP | |
94 for j = 1:BP | |
95 Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
96 Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
97 end | |
98 end | |
99 %%%%%%%%%%%%%%%%%%%%%%%%%%% | |
100 | |
101 %%%% Difference operator %% | |
102 D1 = H\Q; | |
103 %%%%%%%%%%%%%%%%%%%%%%%%%%% |