Mercurial > repos > public > sbplib
comparison +scheme/LaplaceCurvilinear.m @ 450:8d455e49364f feature/grids
Copy Wave2dCurve to new scheme LaplaceCurvilinear
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 09 May 2017 14:58:27 +0200 |
parents | +scheme/Wave2dCurve.m@0707a7192bc3 |
children | 56eb7c088bd4 |
comparison
equal
deleted
inserted
replaced
449:0707a7192bc3 | 450:8d455e49364f |
---|---|
1 classdef LaplaceCurvilinear < scheme.Scheme | |
2 properties | |
3 m % Number of points in each direction, possibly a vector | |
4 h % Grid spacing | |
5 | |
6 grid | |
7 | |
8 order % Order accuracy for the approximation | |
9 | |
10 D % non-stabalized scheme operator | |
11 M % Derivative norm | |
12 c | |
13 J, Ji | |
14 a11, a12, a22 | |
15 | |
16 H % Discrete norm | |
17 Hi | |
18 H_u, H_v % Norms in the x and y directions | |
19 Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. | |
20 Hi_u, Hi_v | |
21 Hiu, Hiv | |
22 e_w, e_e, e_s, e_n | |
23 du_w, dv_w | |
24 du_e, dv_e | |
25 du_s, dv_s | |
26 du_n, dv_n | |
27 gamm_u, gamm_v | |
28 lambda | |
29 | |
30 Dx, Dy % Physical derivatives | |
31 | |
32 x_u | |
33 x_v | |
34 y_u | |
35 y_v | |
36 end | |
37 | |
38 methods | |
39 function obj = LaplaceCurvilinear(g ,order, c, opSet) | |
40 default_arg('opSet',@sbp.D2Variable); | |
41 default_arg('c', 1); | |
42 | |
43 assert(isa(g, 'grid.Curvilinear')) | |
44 | |
45 m = g.size(); | |
46 m_u = m(1); | |
47 m_v = m(2); | |
48 m_tot = g.N(); | |
49 | |
50 h = g.scaling(); | |
51 h_u = h(1); | |
52 h_v = h(2); | |
53 | |
54 % Operators | |
55 ops_u = opSet(m_u, {0, 1}, order); | |
56 ops_v = opSet(m_v, {0, 1}, order); | |
57 | |
58 I_u = speye(m_u); | |
59 I_v = speye(m_v); | |
60 | |
61 D1_u = ops_u.D1; | |
62 D2_u = ops_u.D2; | |
63 H_u = ops_u.H; | |
64 Hi_u = ops_u.HI; | |
65 e_l_u = ops_u.e_l; | |
66 e_r_u = ops_u.e_r; | |
67 d1_l_u = ops_u.d1_l; | |
68 d1_r_u = ops_u.d1_r; | |
69 | |
70 D1_v = ops_v.D1; | |
71 D2_v = ops_v.D2; | |
72 H_v = ops_v.H; | |
73 Hi_v = ops_v.HI; | |
74 e_l_v = ops_v.e_l; | |
75 e_r_v = ops_v.e_r; | |
76 d1_l_v = ops_v.d1_l; | |
77 d1_r_v = ops_v.d1_r; | |
78 | |
79 Du = kr(D1_u,I_v); | |
80 Dv = kr(I_u,D1_v); | |
81 | |
82 % Metric derivatives | |
83 coords = g.points(); | |
84 x = coords(:,1); | |
85 y = coords(:,2); | |
86 | |
87 x_u = Du*x; | |
88 x_v = Dv*x; | |
89 y_u = Du*y; | |
90 y_v = Dv*y; | |
91 | |
92 J = x_u.*y_v - x_v.*y_u; | |
93 a11 = 1./J .* (x_v.^2 + y_v.^2); | |
94 a12 = -1./J .* (x_u.*x_v + y_u.*y_v); | |
95 a22 = 1./J .* (x_u.^2 + y_u.^2); | |
96 lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); | |
97 | |
98 % Assemble full operators | |
99 L_12 = spdiags(a12, 0, m_tot, m_tot); | |
100 Duv = Du*L_12*Dv; | |
101 Dvu = Dv*L_12*Du; | |
102 | |
103 Duu = sparse(m_tot); | |
104 Dvv = sparse(m_tot); | |
105 ind = grid.funcToMatrix(g, 1:m_tot); | |
106 | |
107 for i = 1:m_v | |
108 D = D2_u(a11(ind(:,i))); | |
109 p = ind(:,i); | |
110 Duu(p,p) = D; | |
111 end | |
112 | |
113 for i = 1:m_u | |
114 D = D2_v(a22(ind(i,:))); | |
115 p = ind(i,:); | |
116 Dvv(p,p) = D; | |
117 end | |
118 | |
119 obj.H = kr(H_u,H_v); | |
120 obj.Hi = kr(Hi_u,Hi_v); | |
121 obj.Hu = kr(H_u,I_v); | |
122 obj.Hv = kr(I_u,H_v); | |
123 obj.Hiu = kr(Hi_u,I_v); | |
124 obj.Hiv = kr(I_u,Hi_v); | |
125 | |
126 obj.e_w = kr(e_l_u,I_v); | |
127 obj.e_e = kr(e_r_u,I_v); | |
128 obj.e_s = kr(I_u,e_l_v); | |
129 obj.e_n = kr(I_u,e_r_v); | |
130 obj.du_w = kr(d1_l_u,I_v); | |
131 obj.dv_w = (obj.e_w'*Dv)'; | |
132 obj.du_e = kr(d1_r_u,I_v); | |
133 obj.dv_e = (obj.e_e'*Dv)'; | |
134 obj.du_s = (obj.e_s'*Du)'; | |
135 obj.dv_s = kr(I_u,d1_l_v); | |
136 obj.du_n = (obj.e_n'*Du)'; | |
137 obj.dv_n = kr(I_u,d1_r_v); | |
138 | |
139 obj.x_u = x_u; | |
140 obj.x_v = x_v; | |
141 obj.y_u = y_u; | |
142 obj.y_v = y_v; | |
143 | |
144 obj.m = m; | |
145 obj.h = [h_u h_v]; | |
146 obj.order = order; | |
147 obj.grid = g; | |
148 | |
149 obj.c = c; | |
150 obj.J = spdiags(J, 0, m_tot, m_tot); | |
151 obj.Ji = spdiags(1./J, 0, m_tot, m_tot); | |
152 obj.a11 = a11; | |
153 obj.a12 = a12; | |
154 obj.a22 = a22; | |
155 obj.D = obj.Ji*c^2*(Duu + Duv + Dvu + Dvv); | |
156 obj.lambda = lambda; | |
157 | |
158 obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; | |
159 obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; | |
160 | |
161 obj.gamm_u = h_u*ops_u.borrowing.M.d1; | |
162 obj.gamm_v = h_v*ops_v.borrowing.M.d1; | |
163 end | |
164 | |
165 | |
166 % Closure functions return the opertors applied to the own doamin to close the boundary | |
167 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
168 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
169 % type is a string specifying the type of boundary condition if there are several. | |
170 % data is a function returning the data that should be applied at the boundary. | |
171 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
172 % neighbour_boundary is a string specifying which boundary to interface to. | |
173 function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) | |
174 default_arg('type','neumann'); | |
175 default_arg('parameter', []); | |
176 | |
177 [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv , ~, ~, ~, scale_factor] = obj.get_boundary_ops(boundary); | |
178 switch type | |
179 % Dirichlet boundary condition | |
180 case {'D','d','dirichlet'} | |
181 % v denotes the solution in the neighbour domain | |
182 tuning = 1.2; | |
183 % tuning = 20.2; | |
184 [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t] = obj.get_boundary_ops(boundary); | |
185 | |
186 a_n = spdiag(coeff_n); | |
187 a_t = spdiag(coeff_t); | |
188 | |
189 F = (s * a_n * d_n' + s * a_t*d_t')'; | |
190 | |
191 u = obj; | |
192 | |
193 b1 = gamm*u.lambda./u.a11.^2; | |
194 b2 = gamm*u.lambda./u.a22.^2; | |
195 | |
196 tau = -1./b1 - 1./b2; | |
197 tau = tuning * spdiag(tau); | |
198 sig1 = 1; | |
199 | |
200 penalty_parameter_1 = halfnorm_inv_n*(tau + sig1*halfnorm_inv_t*F*e'*halfnorm_t)*e; | |
201 | |
202 closure = obj.Ji*obj.c^2 * penalty_parameter_1*e'; | |
203 penalty = -obj.Ji*obj.c^2 * penalty_parameter_1; | |
204 | |
205 | |
206 % Neumann boundary condition | |
207 case {'N','n','neumann'} | |
208 c = obj.c; | |
209 | |
210 a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); | |
211 a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); | |
212 d = (a_n * d_n' + a_t*d_t')'; | |
213 | |
214 tau1 = -s; | |
215 tau2 = 0; | |
216 tau = c.^2 * obj.Ji*(tau1*e + tau2*d); | |
217 | |
218 closure = halfnorm_inv*tau*d'; | |
219 penalty = -halfnorm_inv*tau; | |
220 | |
221 % Characteristic boundary condition | |
222 case {'characteristic', 'char', 'c'} | |
223 default_arg('parameter', 1); | |
224 beta = parameter; | |
225 c = obj.c; | |
226 | |
227 a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); | |
228 a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); | |
229 d = s*(a_n * d_n' + a_t*d_t')'; % outward facing normal derivative | |
230 | |
231 tau = -c.^2 * 1/beta*obj.Ji*e; | |
232 | |
233 closure{1} = halfnorm_inv*tau/c*spdiag(scale_factor)*e'; | |
234 closure{2} = halfnorm_inv*tau*beta*d'; | |
235 penalty = -halfnorm_inv*tau; | |
236 | |
237 % Unknown, boundary condition | |
238 otherwise | |
239 error('No such boundary condition: type = %s',type); | |
240 end | |
241 end | |
242 | |
243 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | |
244 % u denotes the solution in the own domain | |
245 % v denotes the solution in the neighbour domain | |
246 tuning = 1.2; | |
247 % tuning = 20.2; | |
248 [e_u, d_n_u, d_t_u, coeff_n_u, coeff_t_u, s_u, gamm_u, halfnorm_inv_u_n, halfnorm_inv_u_t, halfnorm_u_t, I_u] = obj.get_boundary_ops(boundary); | |
249 [e_v, d_n_v, d_t_v, coeff_n_v, coeff_t_v, s_v, gamm_v, halfnorm_inv_v_n, halfnorm_inv_v_t, halfnorm_v_t, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); | |
250 | |
251 a_n_u = spdiag(coeff_n_u); | |
252 a_t_u = spdiag(coeff_t_u); | |
253 a_n_v = spdiag(coeff_n_v); | |
254 a_t_v = spdiag(coeff_t_v); | |
255 | |
256 F_u = (s_u * a_n_u * d_n_u' + s_u * a_t_u*d_t_u')'; | |
257 F_v = (s_v * a_n_v * d_n_v' + s_v * a_t_v*d_t_v')'; | |
258 | |
259 u = obj; | |
260 v = neighbour_scheme; | |
261 | |
262 b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; | |
263 b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; | |
264 b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; | |
265 b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; | |
266 | |
267 tau = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); | |
268 tau = tuning * spdiag(tau); | |
269 sig1 = 1/2; | |
270 sig2 = -1/2; | |
271 | |
272 penalty_parameter_1 = halfnorm_inv_u_n*(e_u*tau + sig1*halfnorm_inv_u_t*F_u*e_u'*halfnorm_u_t*e_u); | |
273 penalty_parameter_2 = halfnorm_inv_u_n * sig2 * e_u; | |
274 | |
275 | |
276 closure = obj.Ji*obj.c^2 * ( penalty_parameter_1*e_u' + penalty_parameter_2*F_u'); | |
277 penalty = obj.Ji*obj.c^2 * (-penalty_parameter_1*e_v' + penalty_parameter_2*F_v'); | |
278 end | |
279 | |
280 % Ruturns the boundary ops and sign for the boundary specified by the string boundary. | |
281 % The right boundary is considered the positive boundary | |
282 % | |
283 % I -- the indecies of the boundary points in the grid matrix | |
284 function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I, scale_factor] = get_boundary_ops(obj, boundary) | |
285 | |
286 % gridMatrix = zeros(obj.m(2),obj.m(1)); | |
287 % gridMatrix(:) = 1:numel(gridMatrix); | |
288 | |
289 ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); | |
290 | |
291 switch boundary | |
292 case 'w' | |
293 e = obj.e_w; | |
294 d_n = obj.du_w; | |
295 d_t = obj.dv_w; | |
296 s = -1; | |
297 | |
298 I = ind(1,:); | |
299 coeff_n = obj.a11(I); | |
300 coeff_t = obj.a12(I); | |
301 scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2); | |
302 case 'e' | |
303 e = obj.e_e; | |
304 d_n = obj.du_e; | |
305 d_t = obj.dv_e; | |
306 s = 1; | |
307 | |
308 I = ind(end,:); | |
309 coeff_n = obj.a11(I); | |
310 coeff_t = obj.a12(I); | |
311 scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2); | |
312 case 's' | |
313 e = obj.e_s; | |
314 d_n = obj.dv_s; | |
315 d_t = obj.du_s; | |
316 s = -1; | |
317 | |
318 I = ind(:,1)'; | |
319 coeff_n = obj.a22(I); | |
320 coeff_t = obj.a12(I); | |
321 scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2); | |
322 case 'n' | |
323 e = obj.e_n; | |
324 d_n = obj.dv_n; | |
325 d_t = obj.du_n; | |
326 s = 1; | |
327 | |
328 I = ind(:,end)'; | |
329 coeff_n = obj.a22(I); | |
330 coeff_t = obj.a12(I); | |
331 scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2); | |
332 otherwise | |
333 error('No such boundary: boundary = %s',boundary); | |
334 end | |
335 | |
336 switch boundary | |
337 case {'w','e'} | |
338 halfnorm_inv_n = obj.Hiu; | |
339 halfnorm_inv_t = obj.Hiv; | |
340 halfnorm_t = obj.Hv; | |
341 gamm = obj.gamm_u; | |
342 case {'s','n'} | |
343 halfnorm_inv_n = obj.Hiv; | |
344 halfnorm_inv_t = obj.Hiu; | |
345 halfnorm_t = obj.Hu; | |
346 gamm = obj.gamm_v; | |
347 end | |
348 end | |
349 | |
350 function N = size(obj) | |
351 N = prod(obj.m); | |
352 end | |
353 | |
354 | |
355 end | |
356 end |