Mercurial > repos > public > sbplib
comparison +time/SBPInTimeImplicitFormulation.m @ 886:8894e9c49e40 feature/timesteppers
Merge with default for latest changes
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 15 Nov 2018 16:36:21 -0800 |
parents | 5df7f99206b2 |
children | 47e86b5270ad |
comparison
equal
deleted
inserted
replaced
816:b5e5b195da1e | 886:8894e9c49e40 |
---|---|
1 classdef SBPInTimeImplicitFormulation < time.Timestepper | |
2 % The SBP in time method. | |
3 % Implemented for A*v_t = B*v + f(t), v(0) = v0 | |
4 properties | |
5 A,B | |
6 f | |
7 | |
8 k % total time step. | |
9 | |
10 blockSize % number of points in each block | |
11 N % Number of components | |
12 | |
13 order | |
14 nodes | |
15 | |
16 M,K % System matrices | |
17 L,U,p,q % LU factorization of M | |
18 e_T | |
19 | |
20 % Time state | |
21 t | |
22 v | |
23 n | |
24 end | |
25 | |
26 methods | |
27 function obj = SBPInTimeImplicitFormulation(A, B, f, k, t0, v0, TYPE, order, blockSize) | |
28 | |
29 default_arg('TYPE','gauss'); | |
30 default_arg('f',[]); | |
31 | |
32 if(strcmp(TYPE,'gauss')) | |
33 default_arg('order',4) | |
34 default_arg('blockSize',4) | |
35 else | |
36 default_arg('order', 8); | |
37 default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE)); | |
38 end | |
39 | |
40 obj.A = A; | |
41 obj.B = B; | |
42 | |
43 if ~isempty(f) | |
44 obj.f = f; | |
45 else | |
46 obj.f = @(t)sparse(length(v0),1); | |
47 end | |
48 | |
49 obj.k = k; | |
50 obj.blockSize = blockSize; | |
51 obj.N = length(v0); | |
52 | |
53 obj.n = 0; | |
54 obj.t = t0; | |
55 | |
56 %==== Build the time discretization matrix =====% | |
57 switch TYPE | |
58 case 'equidistant' | |
59 ops = sbp.D2Standard(blockSize,{0,obj.k},order); | |
60 case 'optimal' | |
61 ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); | |
62 case 'minimal' | |
63 ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); | |
64 case 'gauss' | |
65 ops = sbp.D1Gauss(blockSize,{0,obj.k}); | |
66 end | |
67 | |
68 I = speye(size(A)); | |
69 I_t = speye(blockSize,blockSize); | |
70 | |
71 D1 = kron(ops.D1, I); | |
72 HI = kron(ops.HI, I); | |
73 e_0 = kron(ops.e_l, I); | |
74 e_T = kron(ops.e_r, I); | |
75 obj.nodes = ops.x; | |
76 | |
77 % Convert to form M*w = K*v0 + f(t) | |
78 tau = kron(I_t, A) * e_0; | |
79 M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B); | |
80 | |
81 K = HI*tau; | |
82 | |
83 obj.M = M; | |
84 obj.K = K; | |
85 obj.e_T = e_T; | |
86 | |
87 % LU factorization | |
88 [obj.L,obj.U,obj.p,obj.q] = lu(obj.M, 'vector'); | |
89 | |
90 obj.v = v0; | |
91 end | |
92 | |
93 function [v,t] = getV(obj) | |
94 v = obj.v; | |
95 t = obj.t; | |
96 end | |
97 | |
98 function obj = step(obj) | |
99 RHS = zeros(obj.blockSize*obj.N,1); | |
100 | |
101 for i = 1:obj.blockSize | |
102 RHS((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.t + obj.nodes(i)); | |
103 end | |
104 | |
105 RHS = RHS + obj.K*obj.v; | |
106 | |
107 y = obj.L\RHS(obj.p); | |
108 z = obj.U\y; | |
109 | |
110 w = zeros(size(z)); | |
111 w(obj.q) = z; | |
112 | |
113 obj.v = obj.e_T'*w; | |
114 | |
115 obj.t = obj.t + obj.k; | |
116 obj.n = obj.n + 1; | |
117 end | |
118 end | |
119 | |
120 methods(Static) | |
121 function N = smallestBlockSize(order,TYPE) | |
122 default_arg('TYPE','gauss') | |
123 | |
124 switch TYPE | |
125 case 'gauss' | |
126 N = 4; | |
127 end | |
128 end | |
129 end | |
130 end |