Mercurial > repos > public > sbplib
comparison +time/CdiffImplicit.m @ 886:8894e9c49e40 feature/timesteppers
Merge with default for latest changes
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 15 Nov 2018 16:36:21 -0800 |
parents | d5bce13ece23 |
children | d6ede7f5cbf9 |
comparison
equal
deleted
inserted
replaced
816:b5e5b195da1e | 886:8894e9c49e40 |
---|---|
1 classdef CdiffImplicit < time.Timestepper | |
2 properties | |
3 A, B, C, G | |
4 AA, BB, CC | |
5 k | |
6 t | |
7 v, v_prev | |
8 n | |
9 | |
10 % LU factorization | |
11 L,U,p,q | |
12 end | |
13 | |
14 methods | |
15 % Solves | |
16 % A*u_tt + B*u + C*v_t = G(t) | |
17 % u(t0) = f1 | |
18 % u_t(t0) = f2 | |
19 % starting at time t0 with timestep k | |
20 function obj = CdiffImplicit(A, B, C, G, f1, f2, k, t0) | |
21 default_arg('A', []); | |
22 default_arg('C', []); | |
23 default_arg('G', []); | |
24 default_arg('f1', 0); | |
25 default_arg('f2', 0); | |
26 default_arg('t0', 0); | |
27 | |
28 m = size(B,1); | |
29 | |
30 if isempty(A) | |
31 A = speye(m); | |
32 end | |
33 | |
34 if isempty(C) | |
35 C = sparse(m,m); | |
36 end | |
37 | |
38 if isempty(G) | |
39 G = @(t) sparse(m,1); | |
40 end | |
41 | |
42 if isempty(f1) | |
43 f1 = sparse(m,1); | |
44 end | |
45 | |
46 if isempty(f2) | |
47 f2 = sparse(m,1); | |
48 end | |
49 | |
50 obj.A = A; | |
51 obj.B = B; | |
52 obj.C = C; | |
53 obj.G = G; | |
54 | |
55 AA = 1/k^2*A + 1/2*B + 1/(2*k)*C; | |
56 BB = -2/k^2*A; | |
57 CC = 1/k^2*A + 1/2*B - 1/(2*k)*C; | |
58 % AA*v_next + BB*v + CC*v_prev == G(t_n) | |
59 | |
60 obj.AA = AA; | |
61 obj.BB = BB; | |
62 obj.CC = CC; | |
63 | |
64 v_prev = f1; | |
65 I = speye(m); | |
66 % v = (1/k^2*A)\((1/k^2*A - 1/2*B)*f1 + (1/k*I - 1/2*C)*f2 + 1/2*G(0)); | |
67 v = f1 + k*f2; | |
68 | |
69 | |
70 if ~issparse(A) || ~issparse(B) || ~issparse(C) | |
71 error('LU factorization with full pivoting only works for sparse matrices.') | |
72 end | |
73 | |
74 [L,U,p,q] = lu(AA,'vector'); | |
75 | |
76 obj.L = L; | |
77 obj.U = U; | |
78 obj.p = p; | |
79 obj.q = q; | |
80 | |
81 | |
82 obj.k = k; | |
83 obj.t = t0+k; | |
84 obj.n = 1; | |
85 obj.v = v; | |
86 obj.v_prev = v_prev; | |
87 end | |
88 | |
89 function [v,t] = getV(obj) | |
90 v = obj.v; | |
91 t = obj.t; | |
92 end | |
93 | |
94 function [vt,t] = getVt(obj) | |
95 % Calculate next time step to be able to do centered diff. | |
96 v_next = zeros(size(obj.v)); | |
97 b = obj.G(obj.t) - obj.BB*obj.v - obj.CC*obj.v_prev; | |
98 | |
99 y = obj.L\b(obj.p); | |
100 z = obj.U\y; | |
101 v_next(obj.q) = z; | |
102 | |
103 | |
104 vt = (v_next-obj.v_prev)/(2*obj.k); | |
105 t = obj.t; | |
106 end | |
107 | |
108 function obj = step(obj) | |
109 b = obj.G(obj.t) - obj.BB*obj.v - obj.CC*obj.v_prev; | |
110 obj.v_prev = obj.v; | |
111 | |
112 % % Backslash | |
113 % obj.v = obj.AA\b; | |
114 | |
115 % LU with column pivot | |
116 y = obj.L\b(obj.p); | |
117 z = obj.U\y; | |
118 obj.v(obj.q) = z; | |
119 | |
120 % Update time | |
121 obj.t = obj.t + obj.k; | |
122 obj.n = obj.n + 1; | |
123 end | |
124 end | |
125 end | |
126 | |
127 | |
128 | |
129 | |
130 | |
131 %%% Derivation | |
132 % syms A B C G | |
133 % syms n k | |
134 % syms f1 f2 | |
135 | |
136 % v = symfun(sym('v(n)'),n); | |
137 | |
138 | |
139 % d = A/k^2 * (v(n+1) - 2*v(n) +v(n-1)) + B/2*(v(n+1)+v(n-1)) + C/(2*k)*(v(n+1) - v(n-1)) == G | |
140 % ic1 = v(0) == f1 | |
141 % ic2 = A/k*(v(1)-f1) + k/2*(B*f1 + C*f2 - G) - f2 == 0 | |
142 | |
143 % c = collect(d, [v(n) v(n-1) v(n+1)]) % (-(2*A)/k^2)*v(n) + (B/2 + A/k^2 - C/(2*k))*v(n - 1) + (B/2 + A/k^2 + C/(2*k))*v(n + 1) == G | |
144 % syms AA BB CC | |
145 % % AA = B/2 + A/k^2 + C/(2*k) | |
146 % % BB = -(2*A)/k^2 | |
147 % % CC = B/2 + A/k^2 - C/(2*k) | |
148 % s = subs(c, [B/2 + A/k^2 + C/(2*k), -(2*A)/k^2, B/2 + A/k^2 - C/(2*k)], [AA, BB, CC]) | |
149 | |
150 | |
151 % ic2_a = collect(ic2, [v(1) f1 f2]) % (A/k)*v(1) + ((B*k)/2 - A/k)*f1 + ((C*k)/2 - 1)*f2 - (G*k)/2 == 0 | |
152 |