Mercurial > repos > public > sbplib
comparison +scheme/Elastic2dVariable.m @ 886:8894e9c49e40 feature/timesteppers
Merge with default for latest changes
| author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
|---|---|
| date | Thu, 15 Nov 2018 16:36:21 -0800 |
| parents | b374a8aa9246 |
| children | 386ef449df51 21394c78c72e |
comparison
equal
deleted
inserted
replaced
| 816:b5e5b195da1e | 886:8894e9c49e40 |
|---|---|
| 1 classdef Elastic2dVariable < scheme.Scheme | |
| 2 | |
| 3 % Discretizes the elastic wave equation: | |
| 4 % rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i | |
| 5 % opSet should be cell array of opSets, one per dimension. This | |
| 6 % is useful if we have periodic BC in one direction. | |
| 7 | |
| 8 properties | |
| 9 m % Number of points in each direction, possibly a vector | |
| 10 h % Grid spacing | |
| 11 | |
| 12 grid | |
| 13 dim | |
| 14 | |
| 15 order % Order of accuracy for the approximation | |
| 16 | |
| 17 % Diagonal matrices for varible coefficients | |
| 18 LAMBDA % Variable coefficient, related to dilation | |
| 19 MU % Shear modulus, variable coefficient | |
| 20 RHO, RHOi % Density, variable | |
| 21 | |
| 22 D % Total operator | |
| 23 D1 % First derivatives | |
| 24 | |
| 25 % Second derivatives | |
| 26 D2_lambda | |
| 27 D2_mu | |
| 28 | |
| 29 % Traction operators used for BC | |
| 30 T_l, T_r | |
| 31 tau_l, tau_r | |
| 32 | |
| 33 H, Hi % Inner products | |
| 34 | |
| 35 phi % Borrowing constant for (d1 - e^T*D1) from R | |
| 36 gamma % Borrowing constant for d1 from M | |
| 37 H11 % First element of H | |
| 38 | |
| 39 % Borrowing from H, M, and R | |
| 40 thH | |
| 41 thM | |
| 42 thR | |
| 43 | |
| 44 e_l, e_r | |
| 45 d1_l, d1_r % Normal derivatives at the boundary | |
| 46 E % E{i}^T picks out component i | |
| 47 | |
| 48 H_boundary % Boundary inner products | |
| 49 | |
| 50 % Kroneckered norms and coefficients | |
| 51 RHOi_kron | |
| 52 Hi_kron | |
| 53 end | |
| 54 | |
| 55 methods | |
| 56 | |
| 57 function obj = Elastic2dVariable(g ,order, lambda_fun, mu_fun, rho_fun, opSet) | |
| 58 default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); | |
| 59 default_arg('lambda_fun', @(x,y) 0*x+1); | |
| 60 default_arg('mu_fun', @(x,y) 0*x+1); | |
| 61 default_arg('rho_fun', @(x,y) 0*x+1); | |
| 62 dim = 2; | |
| 63 | |
| 64 assert(isa(g, 'grid.Cartesian')) | |
| 65 | |
| 66 lambda = grid.evalOn(g, lambda_fun); | |
| 67 mu = grid.evalOn(g, mu_fun); | |
| 68 rho = grid.evalOn(g, rho_fun); | |
| 69 m = g.size(); | |
| 70 m_tot = g.N(); | |
| 71 | |
| 72 h = g.scaling(); | |
| 73 lim = g.lim; | |
| 74 if isempty(lim) | |
| 75 x = g.x; | |
| 76 lim = cell(length(x),1); | |
| 77 for i = 1:length(x) | |
| 78 lim{i} = {min(x{i}), max(x{i})}; | |
| 79 end | |
| 80 end | |
| 81 | |
| 82 % 1D operators | |
| 83 ops = cell(dim,1); | |
| 84 for i = 1:dim | |
| 85 ops{i} = opSet{i}(m(i), lim{i}, order); | |
| 86 end | |
| 87 | |
| 88 % Borrowing constants | |
| 89 for i = 1:dim | |
| 90 beta = ops{i}.borrowing.R.delta_D; | |
| 91 obj.H11{i} = ops{i}.borrowing.H11; | |
| 92 obj.phi{i} = beta/obj.H11{i}; | |
| 93 obj.gamma{i} = ops{i}.borrowing.M.d1; | |
| 94 | |
| 95 % Better names | |
| 96 obj.thR{i} = ops{i}.borrowing.R.delta_D; | |
| 97 obj.thM{i} = ops{i}.borrowing.M.d1; | |
| 98 obj.thH{i} = ops{i}.borrowing.H11; | |
| 99 end | |
| 100 | |
| 101 I = cell(dim,1); | |
| 102 D1 = cell(dim,1); | |
| 103 D2 = cell(dim,1); | |
| 104 H = cell(dim,1); | |
| 105 Hi = cell(dim,1); | |
| 106 e_l = cell(dim,1); | |
| 107 e_r = cell(dim,1); | |
| 108 d1_l = cell(dim,1); | |
| 109 d1_r = cell(dim,1); | |
| 110 | |
| 111 for i = 1:dim | |
| 112 I{i} = speye(m(i)); | |
| 113 D1{i} = ops{i}.D1; | |
| 114 D2{i} = ops{i}.D2; | |
| 115 H{i} = ops{i}.H; | |
| 116 Hi{i} = ops{i}.HI; | |
| 117 e_l{i} = ops{i}.e_l; | |
| 118 e_r{i} = ops{i}.e_r; | |
| 119 d1_l{i} = ops{i}.d1_l; | |
| 120 d1_r{i} = ops{i}.d1_r; | |
| 121 end | |
| 122 | |
| 123 %====== Assemble full operators ======== | |
| 124 LAMBDA = spdiag(lambda); | |
| 125 obj.LAMBDA = LAMBDA; | |
| 126 MU = spdiag(mu); | |
| 127 obj.MU = MU; | |
| 128 RHO = spdiag(rho); | |
| 129 obj.RHO = RHO; | |
| 130 obj.RHOi = inv(RHO); | |
| 131 | |
| 132 obj.D1 = cell(dim,1); | |
| 133 obj.D2_lambda = cell(dim,1); | |
| 134 obj.D2_mu = cell(dim,1); | |
| 135 obj.e_l = cell(dim,1); | |
| 136 obj.e_r = cell(dim,1); | |
| 137 obj.d1_l = cell(dim,1); | |
| 138 obj.d1_r = cell(dim,1); | |
| 139 | |
| 140 % D1 | |
| 141 obj.D1{1} = kron(D1{1},I{2}); | |
| 142 obj.D1{2} = kron(I{1},D1{2}); | |
| 143 | |
| 144 % Boundary operators | |
| 145 obj.e_l{1} = kron(e_l{1},I{2}); | |
| 146 obj.e_l{2} = kron(I{1},e_l{2}); | |
| 147 obj.e_r{1} = kron(e_r{1},I{2}); | |
| 148 obj.e_r{2} = kron(I{1},e_r{2}); | |
| 149 | |
| 150 obj.d1_l{1} = kron(d1_l{1},I{2}); | |
| 151 obj.d1_l{2} = kron(I{1},d1_l{2}); | |
| 152 obj.d1_r{1} = kron(d1_r{1},I{2}); | |
| 153 obj.d1_r{2} = kron(I{1},d1_r{2}); | |
| 154 | |
| 155 % D2 | |
| 156 for i = 1:dim | |
| 157 obj.D2_lambda{i} = sparse(m_tot); | |
| 158 obj.D2_mu{i} = sparse(m_tot); | |
| 159 end | |
| 160 ind = grid.funcToMatrix(g, 1:m_tot); | |
| 161 | |
| 162 for i = 1:m(2) | |
| 163 D_lambda = D2{1}(lambda(ind(:,i))); | |
| 164 D_mu = D2{1}(mu(ind(:,i))); | |
| 165 | |
| 166 p = ind(:,i); | |
| 167 obj.D2_lambda{1}(p,p) = D_lambda; | |
| 168 obj.D2_mu{1}(p,p) = D_mu; | |
| 169 end | |
| 170 | |
| 171 for i = 1:m(1) | |
| 172 D_lambda = D2{2}(lambda(ind(i,:))); | |
| 173 D_mu = D2{2}(mu(ind(i,:))); | |
| 174 | |
| 175 p = ind(i,:); | |
| 176 obj.D2_lambda{2}(p,p) = D_lambda; | |
| 177 obj.D2_mu{2}(p,p) = D_mu; | |
| 178 end | |
| 179 | |
| 180 % Quadratures | |
| 181 obj.H = kron(H{1},H{2}); | |
| 182 obj.Hi = inv(obj.H); | |
| 183 obj.H_boundary = cell(dim,1); | |
| 184 obj.H_boundary{1} = H{2}; | |
| 185 obj.H_boundary{2} = H{1}; | |
| 186 | |
| 187 % E{i}^T picks out component i. | |
| 188 E = cell(dim,1); | |
| 189 I = speye(m_tot,m_tot); | |
| 190 for i = 1:dim | |
| 191 e = sparse(dim,1); | |
| 192 e(i) = 1; | |
| 193 E{i} = kron(I,e); | |
| 194 end | |
| 195 obj.E = E; | |
| 196 | |
| 197 % Differentiation matrix D (without SAT) | |
| 198 D2_lambda = obj.D2_lambda; | |
| 199 D2_mu = obj.D2_mu; | |
| 200 D1 = obj.D1; | |
| 201 D = sparse(dim*m_tot,dim*m_tot); | |
| 202 d = @kroneckerDelta; % Kronecker delta | |
| 203 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta | |
| 204 for i = 1:dim | |
| 205 for j = 1:dim | |
| 206 D = D + E{i}*inv(RHO)*( d(i,j)*D2_lambda{i}*E{j}' +... | |
| 207 db(i,j)*D1{i}*LAMBDA*D1{j}*E{j}' ... | |
| 208 ); | |
| 209 D = D + E{i}*inv(RHO)*( d(i,j)*D2_mu{i}*E{j}' +... | |
| 210 db(i,j)*D1{j}*MU*D1{i}*E{j}' + ... | |
| 211 D2_mu{j}*E{i}' ... | |
| 212 ); | |
| 213 end | |
| 214 end | |
| 215 obj.D = D; | |
| 216 %=========================================% | |
| 217 | |
| 218 % Numerical traction operators for BC. | |
| 219 % Because d1 =/= e0^T*D1, the numerical tractions are different | |
| 220 % at every boundary. | |
| 221 T_l = cell(dim,1); | |
| 222 T_r = cell(dim,1); | |
| 223 tau_l = cell(dim,1); | |
| 224 tau_r = cell(dim,1); | |
| 225 % tau^{j}_i = sum_k T^{j}_{ik} u_k | |
| 226 | |
| 227 d1_l = obj.d1_l; | |
| 228 d1_r = obj.d1_r; | |
| 229 e_l = obj.e_l; | |
| 230 e_r = obj.e_r; | |
| 231 D1 = obj.D1; | |
| 232 | |
| 233 % Loop over boundaries | |
| 234 for j = 1:dim | |
| 235 T_l{j} = cell(dim,dim); | |
| 236 T_r{j} = cell(dim,dim); | |
| 237 tau_l{j} = cell(dim,1); | |
| 238 tau_r{j} = cell(dim,1); | |
| 239 | |
| 240 % Loop over components | |
| 241 for i = 1:dim | |
| 242 tau_l{j}{i} = sparse(m_tot,dim*m_tot); | |
| 243 tau_r{j}{i} = sparse(m_tot,dim*m_tot); | |
| 244 for k = 1:dim | |
| 245 T_l{j}{i,k} = ... | |
| 246 -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})... | |
| 247 -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})... | |
| 248 -d(i,k)*MU*e_l{j}*d1_l{j}'; | |
| 249 | |
| 250 T_r{j}{i,k} = ... | |
| 251 d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})... | |
| 252 +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})... | |
| 253 +d(i,k)*MU*e_r{j}*d1_r{j}'; | |
| 254 | |
| 255 tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; | |
| 256 tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}'; | |
| 257 end | |
| 258 | |
| 259 end | |
| 260 end | |
| 261 obj.T_l = T_l; | |
| 262 obj.T_r = T_r; | |
| 263 obj.tau_l = tau_l; | |
| 264 obj.tau_r = tau_r; | |
| 265 | |
| 266 % Kroneckered norms and coefficients | |
| 267 I_dim = speye(dim); | |
| 268 obj.RHOi_kron = kron(obj.RHOi, I_dim); | |
| 269 obj.Hi_kron = kron(obj.Hi, I_dim); | |
| 270 | |
| 271 % Misc. | |
| 272 obj.m = m; | |
| 273 obj.h = h; | |
| 274 obj.order = order; | |
| 275 obj.grid = g; | |
| 276 obj.dim = dim; | |
| 277 | |
| 278 end | |
| 279 | |
| 280 | |
| 281 % Closure functions return the operators applied to the own domain to close the boundary | |
| 282 % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
| 283 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
| 284 % bc is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition | |
| 285 % on the first component. | |
| 286 % data is a function returning the data that should be applied at the boundary. | |
| 287 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
| 288 % neighbour_boundary is a string specifying which boundary to interface to. | |
| 289 function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning) | |
| 290 default_arg('tuning', 1.2); | |
| 291 | |
| 292 assert( iscell(bc), 'The BC type must be a 2x1 cell array' ); | |
| 293 comp = bc{1}; | |
| 294 type = bc{2}; | |
| 295 | |
| 296 % j is the coordinate direction of the boundary | |
| 297 j = obj.get_boundary_number(boundary); | |
| 298 [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary); | |
| 299 | |
| 300 E = obj.E; | |
| 301 Hi = obj.Hi; | |
| 302 LAMBDA = obj.LAMBDA; | |
| 303 MU = obj.MU; | |
| 304 RHOi = obj.RHOi; | |
| 305 | |
| 306 dim = obj.dim; | |
| 307 m_tot = obj.grid.N(); | |
| 308 | |
| 309 % Preallocate | |
| 310 closure = sparse(dim*m_tot, dim*m_tot); | |
| 311 penalty = sparse(dim*m_tot, m_tot/obj.m(j)); | |
| 312 | |
| 313 k = comp; | |
| 314 switch type | |
| 315 | |
| 316 % Dirichlet boundary condition | |
| 317 case {'D','d','dirichlet','Dirichlet'} | |
| 318 | |
| 319 phi = obj.phi{j}; | |
| 320 h = obj.h(j); | |
| 321 h11 = obj.H11{j}*h; | |
| 322 gamma = obj.gamma{j}; | |
| 323 | |
| 324 a_lambda = dim/h11 + 1/(h11*phi); | |
| 325 a_mu_i = 2/(gamma*h); | |
| 326 a_mu_ij = 2/h11 + 1/(h11*phi); | |
| 327 | |
| 328 d = @kroneckerDelta; % Kronecker delta | |
| 329 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta | |
| 330 alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... | |
| 331 + d(i,j)* a_mu_i*MU ... | |
| 332 + db(i,j)*a_mu_ij*MU ); | |
| 333 | |
| 334 % Loop over components that Dirichlet penalties end up on | |
| 335 for i = 1:dim | |
| 336 C = T{k,i}; | |
| 337 A = -d(i,k)*alpha(i,j); | |
| 338 B = A + C; | |
| 339 closure = closure + E{i}*RHOi*Hi*B'*e*H_gamma*(e'*E{k}' ); | |
| 340 penalty = penalty - E{i}*RHOi*Hi*B'*e*H_gamma; | |
| 341 end | |
| 342 | |
| 343 % Free boundary condition | |
| 344 case {'F','f','Free','free','traction','Traction','t','T'} | |
| 345 closure = closure - E{k}*RHOi*Hi*e*H_gamma* (e'*tau{k} ); | |
| 346 penalty = penalty + E{k}*RHOi*Hi*e*H_gamma; | |
| 347 | |
| 348 % Unknown boundary condition | |
| 349 otherwise | |
| 350 error('No such boundary condition: type = %s',type); | |
| 351 end | |
| 352 end | |
| 353 | |
| 354 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | |
| 355 % u denotes the solution in the own domain | |
| 356 % v denotes the solution in the neighbour domain | |
| 357 % Operators without subscripts are from the own domain. | |
| 358 tuning = 1.2; | |
| 359 | |
| 360 % j is the coordinate direction of the boundary | |
| 361 j = obj.get_boundary_number(boundary); | |
| 362 j_v = neighbour_scheme.get_boundary_number(neighbour_boundary); | |
| 363 | |
| 364 % Get boundary operators | |
| 365 [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary); | |
| 366 [e_v, tau_v] = neighbour_scheme.get_boundary_operator({'e','tau'}, neighbour_boundary); | |
| 367 | |
| 368 % Operators and quantities that correspond to the own domain only | |
| 369 Hi = obj.Hi; | |
| 370 RHOi = obj.RHOi; | |
| 371 dim = obj.dim; | |
| 372 | |
| 373 %--- Other operators ---- | |
| 374 m_tot_u = obj.grid.N(); | |
| 375 E = obj.E; | |
| 376 LAMBDA_u = obj.LAMBDA; | |
| 377 MU_u = obj.MU; | |
| 378 lambda_u = e'*LAMBDA_u*e; | |
| 379 mu_u = e'*MU_u*e; | |
| 380 | |
| 381 m_tot_v = neighbour_scheme.grid.N(); | |
| 382 E_v = neighbour_scheme.E; | |
| 383 LAMBDA_v = neighbour_scheme.LAMBDA; | |
| 384 MU_v = neighbour_scheme.MU; | |
| 385 lambda_v = e_v'*LAMBDA_v*e_v; | |
| 386 mu_v = e_v'*MU_v*e_v; | |
| 387 %------------------------- | |
| 388 | |
| 389 % Borrowing constants | |
| 390 h_u = obj.h(j); | |
| 391 thR_u = obj.thR{j}*h_u; | |
| 392 thM_u = obj.thM{j}*h_u; | |
| 393 thH_u = obj.thH{j}*h_u; | |
| 394 | |
| 395 h_v = neighbour_scheme.h(j_v); | |
| 396 thR_v = neighbour_scheme.thR{j_v}*h_v; | |
| 397 thH_v = neighbour_scheme.thH{j_v}*h_v; | |
| 398 thM_v = neighbour_scheme.thM{j_v}*h_v; | |
| 399 | |
| 400 % alpha = penalty strength for normal component, beta for tangential | |
| 401 alpha_u = dim*lambda_u/(4*thH_u) + lambda_u/(4*thR_u) + mu_u/(2*thM_u); | |
| 402 alpha_v = dim*lambda_v/(4*thH_v) + lambda_v/(4*thR_v) + mu_v/(2*thM_v); | |
| 403 beta_u = mu_u/(2*thH_u) + mu_u/(4*thR_u); | |
| 404 beta_v = mu_v/(2*thH_v) + mu_v/(4*thR_v); | |
| 405 alpha = alpha_u + alpha_v; | |
| 406 beta = beta_u + beta_v; | |
| 407 | |
| 408 d = @kroneckerDelta; % Kronecker delta | |
| 409 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta | |
| 410 strength = @(i,j) tuning*(d(i,j)*alpha + db(i,j)*beta); | |
| 411 | |
| 412 % Preallocate | |
| 413 closure = sparse(dim*m_tot_u, dim*m_tot_u); | |
| 414 penalty = sparse(dim*m_tot_u, dim*m_tot_v); | |
| 415 | |
| 416 % Loop over components that penalties end up on | |
| 417 for i = 1:dim | |
| 418 closure = closure - E{i}*RHOi*Hi*e*strength(i,j)*H_gamma*e'*E{i}'; | |
| 419 penalty = penalty + E{i}*RHOi*Hi*e*strength(i,j)*H_gamma*e_v'*E_v{i}'; | |
| 420 | |
| 421 closure = closure - 1/2*E{i}*RHOi*Hi*e*H_gamma*e'*tau{i}; | |
| 422 penalty = penalty - 1/2*E{i}*RHOi*Hi*e*H_gamma*e_v'*tau_v{i}; | |
| 423 | |
| 424 % Loop over components that we have interface conditions on | |
| 425 for k = 1:dim | |
| 426 closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e'*E{k}'; | |
| 427 penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e_v'*E_v{k}'; | |
| 428 end | |
| 429 end | |
| 430 end | |
| 431 | |
| 432 % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. | |
| 433 function [j, nj] = get_boundary_number(obj, boundary) | |
| 434 | |
| 435 switch boundary | |
| 436 case {'w','W','west','West', 'e', 'E', 'east', 'East'} | |
| 437 j = 1; | |
| 438 case {'s','S','south','South', 'n', 'N', 'north', 'North'} | |
| 439 j = 2; | |
| 440 otherwise | |
| 441 error('No such boundary: boundary = %s',boundary); | |
| 442 end | |
| 443 | |
| 444 switch boundary | |
| 445 case {'w','W','west','West','s','S','south','South'} | |
| 446 nj = -1; | |
| 447 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
| 448 nj = 1; | |
| 449 end | |
| 450 end | |
| 451 | |
| 452 % Returns the boundary operator op for the boundary specified by the string boundary. | |
| 453 % op: may be a cell array of strings | |
| 454 function [varargout] = get_boundary_operator(obj, op, boundary) | |
| 455 | |
| 456 switch boundary | |
| 457 case {'w','W','west','West', 'e', 'E', 'east', 'East'} | |
| 458 j = 1; | |
| 459 case {'s','S','south','South', 'n', 'N', 'north', 'North'} | |
| 460 j = 2; | |
| 461 otherwise | |
| 462 error('No such boundary: boundary = %s',boundary); | |
| 463 end | |
| 464 | |
| 465 if ~iscell(op) | |
| 466 op = {op}; | |
| 467 end | |
| 468 | |
| 469 for i = 1:length(op) | |
| 470 switch op{i} | |
| 471 case 'e' | |
| 472 switch boundary | |
| 473 case {'w','W','west','West','s','S','south','South'} | |
| 474 varargout{i} = obj.e_l{j}; | |
| 475 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
| 476 varargout{i} = obj.e_r{j}; | |
| 477 end | |
| 478 case 'd' | |
| 479 switch boundary | |
| 480 case {'w','W','west','West','s','S','south','South'} | |
| 481 varargout{i} = obj.d1_l{j}; | |
| 482 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
| 483 varargout{i} = obj.d1_r{j}; | |
| 484 end | |
| 485 case 'H' | |
| 486 varargout{i} = obj.H_boundary{j}; | |
| 487 case 'T' | |
| 488 switch boundary | |
| 489 case {'w','W','west','West','s','S','south','South'} | |
| 490 varargout{i} = obj.T_l{j}; | |
| 491 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
| 492 varargout{i} = obj.T_r{j}; | |
| 493 end | |
| 494 case 'tau' | |
| 495 switch boundary | |
| 496 case {'w','W','west','West','s','S','south','South'} | |
| 497 varargout{i} = obj.tau_l{j}; | |
| 498 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
| 499 varargout{i} = obj.tau_r{j}; | |
| 500 end | |
| 501 otherwise | |
| 502 error(['No such operator: operator = ' op{i}]); | |
| 503 end | |
| 504 end | |
| 505 | |
| 506 end | |
| 507 | |
| 508 function N = size(obj) | |
| 509 N = obj.dim*prod(obj.m); | |
| 510 end | |
| 511 end | |
| 512 end |
