Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_variable_2.m @ 886:8894e9c49e40 feature/timesteppers
Merge with default for latest changes
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 15 Nov 2018 16:36:21 -0800 |
parents | 43d02533bea3 |
children |
comparison
equal
deleted
inserted
replaced
816:b5e5b195da1e | 886:8894e9c49e40 |
---|---|
1 % Returns D2 as a function handle | |
2 function [H, HI, D1, D2, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_2(m,h) | |
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
4 %%% 4:de ordn. SBP Finita differens %%% | |
5 %%% operatorer framtagna av Ken Mattsson %%% | |
6 %%% %%% | |
7 %%% 6 randpunkter, diagonal norm %%% | |
8 %%% %%% | |
9 %%% Datum: 2013-11-11 %%% | |
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
11 | |
12 BP = 2; | |
13 if(m < 2*BP) | |
14 error('Operator requires at least %d grid points', 2*BP); | |
15 end | |
16 | |
17 % Norm | |
18 Hv = ones(m,1); | |
19 Hv(1) = 1/2; | |
20 Hv(m) = 1/2; | |
21 Hv = h*Hv; | |
22 H = spdiag(Hv, 0); | |
23 HI = spdiag(1./Hv, 0); | |
24 | |
25 % Boundary operators | |
26 e_l = sparse(m,1); | |
27 e_l(1) = 1; | |
28 e_r = rot90(e_l, 2); | |
29 | |
30 d1_l = sparse(m,1); | |
31 d1_l(1:3) = 1/h*[-3/2 2 -1/2]; | |
32 d1_r = -rot90(d1_l, 2); | |
33 | |
34 d2_l = sparse(m,1); | |
35 d2_l(1:3) = 1/h^2*[1 -2 1]; | |
36 d2_r = rot90(d2_l, 2); | |
37 | |
38 d3_l = sparse(m,1); | |
39 d3_l(1:4) = 1/h^3*[-1 3 -3 1]; | |
40 d3_r = -rot90(d3_l, 2); | |
41 | |
42 | |
43 % First derivative SBP operator, 1st order accurate at first 6 boundary points | |
44 stencil = [-1/2, 0, 1/2]; | |
45 diags = [-1 0 1]; | |
46 Q = stripeMatrix(stencil, diags, m); | |
47 | |
48 D1 = HI*(Q - 1/2*e_l*e_l' + 1/2*e_r*e_r'); | |
49 | |
50 % Second derivative, 1st order accurate at first boundary points | |
51 M = sparse(m,m); | |
52 | |
53 scheme_width = 3; | |
54 scheme_radius = (scheme_width-1)/2; | |
55 r = (1+scheme_radius):(m-scheme_radius); | |
56 | |
57 function D2 = D2_fun(c) | |
58 Mm1 = -c(r-1)/2 - c(r)/2; | |
59 M0 = c(r-1)/2 + c(r) + c(r+1)/2; | |
60 Mp1 = -c(r)/2 - c(r+1)/2; | |
61 | |
62 M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m); | |
63 | |
64 M(1:2,1:2) = [c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;]; | |
65 M(m-1:m,m-1:m) = [c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;]; | |
66 M = 1/h*M; | |
67 | |
68 D2 = HI*(-M - c(1)*e_l*d1_l' + c(m)*e_r*d1_r'); | |
69 end | |
70 D2 = @D2_fun; | |
71 | |
72 % Fourth derivative, 0th order accurate at first 6 boundary points | |
73 stencil = [1, -4, 6, -4, 1]; | |
74 diags = -2:2; | |
75 M4 = stripeMatrix(stencil, diags, m); | |
76 | |
77 M4_U = [ | |
78 0.13e2/0.10e2 -0.12e2/0.5e1 0.9e1/0.10e2 0.1e1/0.5e1; | |
79 -0.12e2/0.5e1 0.26e2/0.5e1 -0.16e2/0.5e1 0.2e1/0.5e1; | |
80 0.9e1/0.10e2 -0.16e2/0.5e1 0.47e2/0.10e2 -0.17e2/0.5e1; | |
81 0.1e1/0.5e1 0.2e1/0.5e1 -0.17e2/0.5e1 0.29e2/0.5e1; | |
82 ]; | |
83 | |
84 M4(1:4,1:4) = M4_U; | |
85 M4(m-3:m,m-3:m) = rot90(M4_U, 2); | |
86 M4 = 1/h^3*M4; | |
87 | |
88 D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r'); | |
89 end |