Mercurial > repos > public > sbplib
comparison +time/+rk/butcherTableau.m @ 888:8732d6bd9890 feature/timesteppers
Add general Runge-Kutta class
- Add a general Runge-Kutta class which time integrates the solution based on coefficients obtained from a Butcher tableau
- Add butcher tableau which returns coefficents for the specified Runge-Kutta method
- Remove RungKutta4proper, since obsolete
| author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
|---|---|
| date | Thu, 15 Nov 2018 17:10:01 -0800 |
| parents | |
| children | d1c1615bd1a5 |
comparison
equal
deleted
inserted
replaced
| 887:50d5a3843099 | 888:8732d6bd9890 |
|---|---|
| 1 % Returns the coefficients used in a RK method as defined by a Butcher Tableau. | |
| 2 % | |
| 3 % @param method - string specifying which Runge-Kutta method to be used. | |
| 4 % @return s - number of stages | |
| 5 % @return a - coefficents for intermediate stages | |
| 6 % @return b - weights for summing stages | |
| 7 % @return c - time step coefficents for intermediate stages | |
| 8 function [s,a,b,c] = butcherTableau(method) | |
| 9 switch method | |
| 10 case "tvd-3" | |
| 11 % TVD (Total Variational Diminishing) | |
| 12 s = 3; | |
| 13 a = zeros(s,s-1); | |
| 14 a(2,1) = 1; | |
| 15 a(3,1) = 1/4; a(3,2) = 1/4; | |
| 16 b = [1/6, 1/6, 2/3]; | |
| 17 c = [0 1 1/2]; | |
| 18 case "rk4" | |
| 19 % Standard RK4 | |
| 20 s = 4; | |
| 21 a = zeros(s,s-1); | |
| 22 a(2,1) = 1/2; | |
| 23 a(3,1) = 0; a(3,2) = 1/2; | |
| 24 a(4,1) = 0; a(4,2) = 0; a(4,3) = 1; | |
| 25 b = [1/6 1/3 1/3 1/6]; | |
| 26 c = [0, 1/2, 1/2, 1]; | |
| 27 case "rk4-3/8" | |
| 28 % 3/8 RK4 (Kuttas method). Lower truncation error, more flops | |
| 29 s = 4; | |
| 30 a = zeros(s,s-1); | |
| 31 a(2,1) = 1/3; | |
| 32 a(3,1) = -1/3; a(3,2) = 1; | |
| 33 a(4,1) = 1; a(4,2) = -1; a(4,3) = 1; | |
| 34 b = [1/8 3/8 3/8 1/8]; | |
| 35 c = [0, 1/3, 2/3, 1]; | |
| 36 case "rk6" | |
| 37 % Runge-Kutta 6 from Alshina07 | |
| 38 s = 7; | |
| 39 a = zeros(s,s-1); | |
| 40 a(2,1) = 4/7; | |
| 41 a(3,1) = 115/112; a(3,2) = -5/16; | |
| 42 a(4,1) = 589/630; a(4,2) = 5/18; a(4,3) = -16/45; | |
| 43 a(5,1) = 229/1200 - 29/6000*sqrt(5); a(5,2) = 119/240 - 187/1200*sqrt(5); a(5,3) = -14/75 + 34/375*sqrt(5); a(5,4) = -3/100*sqrt(5); | |
| 44 a(6,1) = 71/2400 - 587/12000*sqrt(5); a(6,2) = 187/480 - 391/2400*sqrt(5); a(6,3) = -38/75 + 26/375*sqrt(5); a(6,4) = 27/80 - 3/400*sqrt(5); a(6,5) = (1+sqrt(5))/4; | |
| 45 a(7,1) = -49/480 + 43/160*sqrt(5); a(7,2) = -425/96 + 51/32*sqrt(5); a(7,3) = 52/15 - 4/5*sqrt(5); a(7,4) = -27/16 + 3/16*sqrt(5); a(7,5) = 5/4 - 3/4*sqrt(5); a(7,6) = 5/2 - 1/2*sqrt(5); | |
| 46 b = [1/12 0 0 0 5/12 5/12 1/12]; | |
| 47 c = [0, 4/7, 5/7, 6/7, (5-sqrt(5))/10, (5+sqrt(5))/10, 1]; | |
| 48 otherwise | |
| 49 error('That Runge-Kutta method is not implemented', method) | |
| 50 end |
