Mercurial > repos > public > sbplib
comparison +scheme/Schrodinger2dCurve.m @ 517:7a091a3527df feature/quantumTriangles
sign change in SAT-TERM
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Mon, 10 Jul 2017 09:27:58 +0200 |
parents | afff85574ddb |
children | 4709f2329372 |
comparison
equal
deleted
inserted
replaced
516:afff85574ddb | 517:7a091a3527df |
---|---|
134 if(obj.t_up == t) | 134 if(obj.t_up == t) |
135 return | 135 return |
136 else | 136 else |
137 ti = parametrization.Ti.points(obj.p{1}(t),obj.p{2}(t),obj.p{3}(t),obj.p{4}(t)); | 137 ti = parametrization.Ti.points(obj.p{1}(t),obj.p{2}(t),obj.p{3}(t),obj.p{4}(t)); |
138 ti_tau = parametrization.Ti.points(obj.p{5}(t),obj.p{6}(t),obj.p{7}(t),obj.p{8}(t)); | 138 ti_tau = parametrization.Ti.points(obj.p{5}(t),obj.p{6}(t),obj.p{7}(t),obj.p{8}(t)); |
139 | |
140 lcoords=points(obj.grid); | 139 lcoords=points(obj.grid); |
141 [obj.xm,obj.ym]= ti.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_v,2)); | 140 [obj.xm,obj.ym]= ti.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_v,2)); |
142 [x_tau,y_tau]= ti_tau.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_v,2)); | 141 [x_tau,y_tau]= ti_tau.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_v,2)); |
143 x = reshape(obj.xm,obj.m_tot,1); | 142 x = reshape(obj.xm,obj.m_tot,1); |
144 y = reshape(obj.ym,obj.m_tot,1); | 143 y = reshape(obj.ym,obj.m_tot,1); |
212 | 211 |
213 | 212 |
214 F = @(t)(s * a_n(t)*d_n' + s * a_t(t) *d_t')'; | 213 F = @(t)(s * a_n(t)*d_n' + s * a_t(t) *d_t')'; |
215 tau1 = 1; | 214 tau1 = 1; |
216 a = @(t)spdiag(g(t)); | 215 a = @(t)spdiag(g(t)); |
217 tau2 = @(t) (-1*s*a(t))/2; | 216 tau2 = @(t) (1*s*a(t))/2; |
218 | 217 |
219 penalty_parameter_1 = @(t) 1*1i*halfnorm_inv_n*halfnorm_inv_t*F(t)*e'*halfnorm_t*e; | 218 penalty_parameter_1 = @(t) 1*1i*halfnorm_inv_n*halfnorm_inv_t*F(t)*e'*halfnorm_t*e; |
220 penalty_parameter_2 = @(t) halfnorm_inv_n*e*tau2(t); | 219 penalty_parameter_2 = @(t) halfnorm_inv_n*e*tau2(t); |
221 | 220 |
222 closure = @(t) sqrt(obj.Ji)*(obj.c^2 * penalty_parameter_1(t)*e' + penalty_parameter_2(t)*e')*sqrt(obj.Ji); | 221 closure = @(t) sqrt(obj.Ji)*(obj.c^2 * penalty_parameter_1(t)*e' + penalty_parameter_2(t)*e')*sqrt(obj.Ji); |