comparison +scheme/Schrodinger2dCurve.m @ 517:7a091a3527df feature/quantumTriangles

sign change in SAT-TERM
author Ylva Rydin <ylva.rydin@telia.com>
date Mon, 10 Jul 2017 09:27:58 +0200
parents afff85574ddb
children 4709f2329372
comparison
equal deleted inserted replaced
516:afff85574ddb 517:7a091a3527df
134 if(obj.t_up == t) 134 if(obj.t_up == t)
135 return 135 return
136 else 136 else
137 ti = parametrization.Ti.points(obj.p{1}(t),obj.p{2}(t),obj.p{3}(t),obj.p{4}(t)); 137 ti = parametrization.Ti.points(obj.p{1}(t),obj.p{2}(t),obj.p{3}(t),obj.p{4}(t));
138 ti_tau = parametrization.Ti.points(obj.p{5}(t),obj.p{6}(t),obj.p{7}(t),obj.p{8}(t)); 138 ti_tau = parametrization.Ti.points(obj.p{5}(t),obj.p{6}(t),obj.p{7}(t),obj.p{8}(t));
139
140 lcoords=points(obj.grid); 139 lcoords=points(obj.grid);
141 [obj.xm,obj.ym]= ti.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_v,2)); 140 [obj.xm,obj.ym]= ti.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_v,2));
142 [x_tau,y_tau]= ti_tau.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_v,2)); 141 [x_tau,y_tau]= ti_tau.map(lcoords(1:obj.m_v:end,1),lcoords(1:obj.m_v,2));
143 x = reshape(obj.xm,obj.m_tot,1); 142 x = reshape(obj.xm,obj.m_tot,1);
144 y = reshape(obj.ym,obj.m_tot,1); 143 y = reshape(obj.ym,obj.m_tot,1);
212 211
213 212
214 F = @(t)(s * a_n(t)*d_n' + s * a_t(t) *d_t')'; 213 F = @(t)(s * a_n(t)*d_n' + s * a_t(t) *d_t')';
215 tau1 = 1; 214 tau1 = 1;
216 a = @(t)spdiag(g(t)); 215 a = @(t)spdiag(g(t));
217 tau2 = @(t) (-1*s*a(t))/2; 216 tau2 = @(t) (1*s*a(t))/2;
218 217
219 penalty_parameter_1 = @(t) 1*1i*halfnorm_inv_n*halfnorm_inv_t*F(t)*e'*halfnorm_t*e; 218 penalty_parameter_1 = @(t) 1*1i*halfnorm_inv_n*halfnorm_inv_t*F(t)*e'*halfnorm_t*e;
220 penalty_parameter_2 = @(t) halfnorm_inv_n*e*tau2(t); 219 penalty_parameter_2 = @(t) halfnorm_inv_n*e*tau2(t);
221 220
222 closure = @(t) sqrt(obj.Ji)*(obj.c^2 * penalty_parameter_1(t)*e' + penalty_parameter_2(t)*e')*sqrt(obj.Ji); 221 closure = @(t) sqrt(obj.Ji)*(obj.c^2 * penalty_parameter_1(t)*e' + penalty_parameter_2(t)*e')*sqrt(obj.Ji);