comparison +scheme/LaplaceCurvilinearNewCorner.m @ 1080:753de514ae77 feature/poroelastic

Add H_1D to LaplaceCurvilinearNewCorner
author Martin Almquist <malmquist@stanford.edu>
date Sun, 03 Mar 2019 15:00:42 -0800
parents b828e589d540
children 27019aca2f17
comparison
equal deleted inserted replaced
1060:e40899094f20 1080:753de514ae77
29 y_u 29 y_u
30 y_v 30 y_v
31 s_w, s_e, s_s, s_n % Boundary integral scale factors 31 s_w, s_e, s_s, s_n % Boundary integral scale factors
32 32
33 % Inner product and operators for logical coordinates 33 % Inner product and operators for logical coordinates
34 H_u, H_v % Norms in the x and y directions 34 H_u, H_v, H_1D % Norms in the x and y directions
35 Hi_u, Hi_v 35 Hi_u, Hi_v
36 Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. 36 Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
37 Hiu, Hiv 37 Hiu, Hiv
38 du_w, dv_w 38 du_w, dv_w
39 du_e, dv_e 39 du_e, dv_e
119 119
120 120
121 % Logical operators 121 % Logical operators
122 Du = kr(D1_u,I_v); 122 Du = kr(D1_u,I_v);
123 Dv = kr(I_u,D1_v); 123 Dv = kr(I_u,D1_v);
124 obj.H_u = H_u;
125 obj.H_v = H_v;
126 obj.H_1D = {H_u, H_v};
127
124 obj.Hu = kr(H_u,I_v); 128 obj.Hu = kr(H_u,I_v);
125 obj.Hv = kr(I_u,H_v); 129 obj.Hv = kr(I_u,H_v);
126 obj.Hiu = kr(Hi_u,I_v); 130 obj.Hiu = kr(Hi_u,I_v);
127 obj.Hiv = kr(I_u,Hi_v); 131 obj.Hiv = kr(I_u,Hi_v);
128 132