Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_lonely_6_min_boundary_points.m @ 325:72468bc9b63f feature/beams
Renamed some operator implementations.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 26 Sep 2016 09:55:16 +0200 |
parents | +sbp/+implementations/d4_variable_6_min_boundary_points.m@c0cbffcf6513 |
children | b19e142fcae1 |
comparison
equal
deleted
inserted
replaced
324:c0cbffcf6513 | 325:72468bc9b63f |
---|---|
1 function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_min_boundary_points(m,h) | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 %%% 6:te ordn. SBP Finita differens %%% | |
4 %%% operatorer med diagonal norm %%% | |
5 %%% Extension to variable koeff %%% | |
6 %%% %%% | |
7 %%% H (Normen) %%% | |
8 %%% D1=H^(-1)Q (approx f?rsta derivatan) %%% | |
9 %%% D2 (approx andra derivatan) %%% | |
10 %%% D2=HI*(R+C*D*S %%% | |
11 %%% %%% | |
12 %%% R=-D1'*H*C*D1-RR %%% | |
13 %%% %%% | |
14 %%% RR ?r dissipation) %%% | |
15 %%% Dissipationen uppbyggd av D4: %%% | |
16 %%% DI=D4*B*H*D4 %%% | |
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
18 | |
19 % H?r med 6 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator | |
20 | |
21 BP = 6; | |
22 if(m<2*BP) | |
23 error(['Operator requires at least ' num2str(2*BP) ' grid points']); | |
24 end | |
25 | |
26 % Norm | |
27 Hv = ones(m,1); | |
28 Hv(1:6) = [13649/43200,12013/8640,2711/4320,5359/4320,7877/8640, 43801/43200]; | |
29 Hv(m-5:m) = rot90(Hv(1:6),2); | |
30 Hv = h*Hv; | |
31 H = spdiag(Hv, 0); | |
32 HI = spdiag(1./Hv, 0); | |
33 | |
34 | |
35 % Boundary operators | |
36 e_l = sparse(m,1); | |
37 e_l(1) = 1; | |
38 e_r = rot90(e_l, 2); | |
39 | |
40 d1_l = sparse(m,1); | |
41 d1_l(1:5) = [-25/12, 4, -3, 4/3, -1/4]/h; | |
42 d1_r = -rot90(d1_l); | |
43 | |
44 d2_l = sparse(m,1); | |
45 d2_l(1:5) = [0.35e2/0.12e2 -0.26e2/0.3e1 0.19e2/0.2e1 -0.14e2/0.3e1 0.11e2/0.12e2;]/h^2; | |
46 d2_r = rot90(d2_l, 2); | |
47 | |
48 d3_l = sparse(m,1); | |
49 d3_l(1:5) = [-0.5e1/0.2e1 9 -12 7 -0.3e1/0.2e1;]/h^3; | |
50 d3_r = -rot90(d3_l, 2); | |
51 | |
52 | |
53 % Fourth derivative, 1th order accurate at first 8 boundary points (still | |
54 % yield 5th order convergence if stable: for example u_tt=-u_xxxx | |
55 | |
56 stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240]; | |
57 diags = -4:4; | |
58 M4 = stripeMatrix(stencil, diags, m); | |
59 | |
60 M4_U=[ | |
61 0.3504379e7/0.907200e6 -0.4613983e7/0.453600e6 0.4260437e7/0.453600e6 -0.418577e6/0.113400e6 0.524579e6/0.907200e6 0.535e3/0.18144e5; | |
62 -0.4613983e7/0.453600e6 0.5186159e7/0.181440e6 -0.81121e5/0.2835e4 0.218845e6/0.18144e5 -0.159169e6/0.90720e5 -0.94669e5/0.907200e6; | |
63 0.4260437e7/0.453600e6 -0.81121e5/0.2835e4 0.147695e6/0.4536e4 -0.384457e6/0.22680e5 0.339653e6/0.90720e5 -0.18233e5/0.113400e6; | |
64 -0.418577e6/0.113400e6 0.218845e6/0.18144e5 -0.384457e6/0.22680e5 0.65207e5/0.4536e4 -0.22762e5/0.2835e4 0.1181753e7/0.453600e6; | |
65 0.524579e6/0.907200e6 -0.159169e6/0.90720e5 0.339653e6/0.90720e5 -0.22762e5/0.2835e4 0.2006171e7/0.181440e6 -0.3647647e7/0.453600e6; | |
66 0.535e3/0.18144e5 -0.94669e5/0.907200e6 -0.18233e5/0.113400e6 0.1181753e7/0.453600e6 -0.3647647e7/0.453600e6 0.10305271e8/0.907200e6; | |
67 ]; | |
68 | |
69 M4(1:6,1:6) = M4_U; | |
70 M4(m-5:m,m-5:m) = rot90(M4_U, 2); | |
71 M4 = 1/h^3*M4; | |
72 | |
73 D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r'); | |
74 end |