Mercurial > repos > public > sbplib
comparison +scheme/Schrodinger2d.m @ 718:71aa5828cbbf feature/utux2D
Add Schrödinger scheme for 2d single block. Will develop to multiblock with interpolation.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Sat, 03 Mar 2018 16:18:33 -0800 |
parents | |
children | b3f8fb9cefd2 |
comparison
equal
deleted
inserted
replaced
717:8e4274ee6dd8 | 718:71aa5828cbbf |
---|---|
1 classdef Schrodinger2d < scheme.Scheme | |
2 | |
3 % Discretizes the Laplacian with constant coefficent, | |
4 % in the Schrödinger equation way (i.e., the discretization matrix is not necessarily | |
5 % definite) | |
6 % u_t = a*i*Laplace u | |
7 % opSet should be cell array of opSets, one per dimension. This | |
8 % is useful if we have periodic BC in one direction. | |
9 | |
10 properties | |
11 m % Number of points in each direction, possibly a vector | |
12 h % Grid spacing | |
13 | |
14 grid | |
15 dim | |
16 | |
17 order % Order of accuracy for the approximation | |
18 | |
19 % Diagonal matrix for variable coefficients | |
20 a % Constant coefficient | |
21 | |
22 D % Total operator | |
23 D1 % First derivatives | |
24 | |
25 % Second derivatives | |
26 D2 | |
27 | |
28 H, Hi % Inner products | |
29 e_l, e_r | |
30 d1_l, d1_r % Normal derivatives at the boundary | |
31 | |
32 H_boundary % Boundary inner products | |
33 | |
34 end | |
35 | |
36 methods | |
37 | |
38 function obj = Schrodinger2d(g ,order, a, opSet) | |
39 default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); | |
40 default_arg('a',1); | |
41 dim = 2; | |
42 | |
43 assert(isa(g, 'grid.Cartesian')) | |
44 | |
45 m = g.size(); | |
46 m_tot = g.N(); | |
47 | |
48 h = g.scaling(); | |
49 xlim = {g.x{1}(1), g.x{1}(end)}; | |
50 ylim = {g.x{2}(1), g.x{2}(end)}; | |
51 lim = {xlim, ylim}; | |
52 | |
53 % 1D operators | |
54 ops = cell(dim,1); | |
55 for i = 1:dim | |
56 ops{i} = opSet{i}(m(i), lim{i}, order); | |
57 end | |
58 | |
59 I = cell(dim,1); | |
60 D1 = cell(dim,1); | |
61 D2 = cell(dim,1); | |
62 H = cell(dim,1); | |
63 Hi = cell(dim,1); | |
64 e_l = cell(dim,1); | |
65 e_r = cell(dim,1); | |
66 d1_l = cell(dim,1); | |
67 d1_r = cell(dim,1); | |
68 | |
69 for i = 1:dim | |
70 I{i} = speye(m(i)); | |
71 D1{i} = ops{i}.D1; | |
72 D2{i} = ops{i}.D2; | |
73 H{i} = ops{i}.H; | |
74 Hi{i} = ops{i}.HI; | |
75 e_l{i} = ops{i}.e_l; | |
76 e_r{i} = ops{i}.e_r; | |
77 d1_l{i} = ops{i}.d1_l; | |
78 d1_r{i} = ops{i}.d1_r; | |
79 end | |
80 | |
81 % Constant coeff D2 | |
82 for i = 1:dim | |
83 D2{i} = D2{i}(ones(m(i),1)); | |
84 end | |
85 | |
86 %====== Assemble full operators ======== | |
87 obj.D1 = cell(dim,1); | |
88 obj.D2 = cell(dim,1); | |
89 obj.e_l = cell(dim,1); | |
90 obj.e_r = cell(dim,1); | |
91 obj.d1_l = cell(dim,1); | |
92 obj.d1_r = cell(dim,1); | |
93 | |
94 % D1 | |
95 obj.D1{1} = kron(D1{1},I{2}); | |
96 obj.D1{2} = kron(I{1},D1{2}); | |
97 | |
98 % Boundary operators | |
99 obj.e_l{1} = kron(e_l{1},I{2}); | |
100 obj.e_l{2} = kron(I{1},e_l{2}); | |
101 obj.e_r{1} = kron(e_r{1},I{2}); | |
102 obj.e_r{2} = kron(I{1},e_r{2}); | |
103 | |
104 obj.d1_l{1} = kron(d1_l{1},I{2}); | |
105 obj.d1_l{2} = kron(I{1},d1_l{2}); | |
106 obj.d1_r{1} = kron(d1_r{1},I{2}); | |
107 obj.d1_r{2} = kron(I{1},d1_r{2}); | |
108 | |
109 % D2 | |
110 obj.D2{1} = kron(D2{1},I{2}); | |
111 obj.D2{2} = kron(I{1},D2{2}); | |
112 | |
113 % Quadratures | |
114 obj.H = kron(H{1},H{2}); | |
115 obj.Hi = inv(obj.H); | |
116 obj.H_boundary = cell(dim,1); | |
117 obj.H_boundary{1} = H{2}; | |
118 obj.H_boundary{2} = H{1}; | |
119 | |
120 % Differentiation matrix D (without SAT) | |
121 D2 = obj.D2; | |
122 D = sparse(m_tot,m_tot); | |
123 for j = 1:dim | |
124 D = D + a*1i*D2{j}; | |
125 end | |
126 obj.D = D; | |
127 %=========================================% | |
128 | |
129 % Misc. | |
130 obj.m = m; | |
131 obj.h = h; | |
132 obj.order = order; | |
133 obj.grid = g; | |
134 obj.dim = dim; | |
135 obj.a = a; | |
136 | |
137 end | |
138 | |
139 | |
140 % Closure functions return the operators applied to the own domain to close the boundary | |
141 % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
142 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
143 % type is a string specifying the type of boundary condition. | |
144 % data is a function returning the data that should be applied at the boundary. | |
145 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
146 % neighbour_boundary is a string specifying which boundary to interface to. | |
147 function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) | |
148 default_arg('type','Neumann'); | |
149 default_arg('parameter', []); | |
150 | |
151 % j is the coordinate direction of the boundary | |
152 % nj: outward unit normal component. | |
153 % nj = -1 for west, south, bottom boundaries | |
154 % nj = 1 for east, north, top boundaries | |
155 [j, nj] = obj.get_boundary_number(boundary); | |
156 switch nj | |
157 case 1 | |
158 e = obj.e_r; | |
159 d = obj.d1_r; | |
160 case -1 | |
161 e = obj.e_l; | |
162 d = obj.d1_l; | |
163 end | |
164 | |
165 Hi = obj.Hi; | |
166 H_gamma = obj.H_boundary{j}; | |
167 a = obj.a; | |
168 | |
169 switch type | |
170 | |
171 % Dirichlet boundary condition | |
172 case {'D','d','dirichlet','Dirichlet'} | |
173 closure = nj*Hi*d{j}*a*1i*H_gamma*(e{j}' ); | |
174 penalty = -nj*Hi*d{j}*a*1i*H_gamma; | |
175 | |
176 % Free boundary condition | |
177 case {'N','n','neumann','Neumann'} | |
178 closure = -nj*Hi*e{j}*a*1i*H_gamma*(d{j}' ); | |
179 penalty = nj*Hi*e{j}*a*1i*H_gamma; | |
180 | |
181 % Unknown boundary condition | |
182 otherwise | |
183 error('No such boundary condition: type = %s',type); | |
184 end | |
185 end | |
186 | |
187 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | |
188 % u denotes the solution in the own domain | |
189 % v denotes the solution in the neighbour domain | |
190 error('Interface not implemented'); | |
191 end | |
192 | |
193 % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. | |
194 function [j, nj] = get_boundary_number(obj, boundary) | |
195 | |
196 switch boundary | |
197 case {'w','W','west','West', 'e', 'E', 'east', 'East'} | |
198 j = 1; | |
199 case {'s','S','south','South', 'n', 'N', 'north', 'North'} | |
200 j = 2; | |
201 otherwise | |
202 error('No such boundary: boundary = %s',boundary); | |
203 end | |
204 | |
205 switch boundary | |
206 case {'w','W','west','West','s','S','south','South'} | |
207 nj = -1; | |
208 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
209 nj = 1; | |
210 end | |
211 end | |
212 | |
213 % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. | |
214 function [return_op] = get_boundary_operator(obj, op, boundary) | |
215 | |
216 switch boundary | |
217 case {'w','W','west','West', 'e', 'E', 'east', 'East'} | |
218 j = 1; | |
219 case {'s','S','south','South', 'n', 'N', 'north', 'North'} | |
220 j = 2; | |
221 otherwise | |
222 error('No such boundary: boundary = %s',boundary); | |
223 end | |
224 | |
225 switch op | |
226 case 'e' | |
227 switch boundary | |
228 case {'w','W','west','West','s','S','south','South'} | |
229 return_op = obj.e_l{j}; | |
230 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
231 return_op = obj.e_r{j}; | |
232 end | |
233 case 'd' | |
234 switch boundary | |
235 case {'w','W','west','West','s','S','south','South'} | |
236 return_op = obj.d1_l{j}; | |
237 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
238 return_op = obj.d1_r{j}; | |
239 end | |
240 otherwise | |
241 error(['No such operator: operator = ' op]); | |
242 end | |
243 | |
244 end | |
245 | |
246 function N = size(obj) | |
247 N = prod(obj.m); | |
248 end | |
249 end | |
250 end |