comparison +scheme/Elastic2dCurvilinearAnisotropic.m @ 1306:633757e582e5 feature/poroelastic

Add transformation gradient as property in CurvilinearAnisotropic
author Martin Almquist <malmquist@stanford.edu>
date Sun, 19 Jul 2020 20:29:48 -0700
parents a0d615bde7f8
children 6c308da9dcbc
comparison
equal deleted inserted replaced
1305:b5907140c069 1306:633757e582e5
21 RHO % Density 21 RHO % Density
22 C % Elastic stiffness tensor 22 C % Elastic stiffness tensor
23 23
24 D % Total operator 24 D % Total operator
25 25
26 K % Transformation gradient
26 Dx, Dy % Physical derivatives 27 Dx, Dy % Physical derivatives
27 sigma % Cell matrix of physical stress operators 28 sigma % Cell matrix of physical stress operators
28 n_w, n_e, n_s, n_n % Physical normals 29 n_w, n_e, n_s, n_n % Physical normals
29 tangent_w, tangent_e, tangent_s, tangent_n % Physical tangents 30 tangent_w, tangent_e, tangent_s, tangent_n % Physical tangents
30 31
162 K = cell(dim, dim); 163 K = cell(dim, dim);
163 K{1,1} = y_v./J; 164 K{1,1} = y_v./J;
164 K{1,2} = -y_u./J; 165 K{1,2} = -y_u./J;
165 K{2,1} = -x_v./J; 166 K{2,1} = -x_v./J;
166 K{2,2} = x_u./J; 167 K{2,2} = x_u./J;
168 obj.K = K;
167 169
168 % Physical derivatives 170 % Physical derivatives
169 obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; 171 obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv;
170 obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; 172 obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv;
171 173