Mercurial > repos > public > sbplib
comparison +scheme/LaplaceCurvilinearNew.m @ 1331:60c875c18de3 feature/D2_boundary_opt
Merge with feature/poroelastic for Elastic schemes
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 10 Mar 2022 16:54:26 +0100 |
parents | 5c5815af4b7a |
children |
comparison
equal
deleted
inserted
replaced
1330:855871e0b852 | 1331:60c875c18de3 |
---|---|
1 classdef LaplaceCurvilinearNew < scheme.Scheme | |
2 properties | |
3 m % Number of points in each direction, possibly a vector | |
4 h % Grid spacing | |
5 dim % Number of spatial dimensions | |
6 | |
7 grid | |
8 | |
9 order % Order of accuracy for the approximation | |
10 | |
11 a,b % Parameters of the operator | |
12 weight % Parameter in front of time derivative (e.g. u_tt in wave equation) here: 1/a. | |
13 | |
14 | |
15 % Inner products and operators for physical coordinates | |
16 D % Laplace operator | |
17 H, Hi % Inner product | |
18 e_w, e_e, e_s, e_n | |
19 d_w, d_e, d_s, d_n % Normal derivatives at the boundary | |
20 H_w, H_e, H_s, H_n % Boundary inner products | |
21 Dx, Dy % Physical derivatives | |
22 M % Gradient inner product | |
23 | |
24 % Metric coefficients | |
25 J, Ji | |
26 a11, a12, a22 | |
27 K | |
28 x_u | |
29 x_v | |
30 y_u | |
31 y_v | |
32 s_w, s_e, s_s, s_n % Boundary integral scale factors | |
33 | |
34 % Inner product and operators for logical coordinates | |
35 H_u, H_v % Norms in the x and y directions | |
36 Hi_u, Hi_v | |
37 Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. | |
38 Hiu, Hiv | |
39 du_w, dv_w | |
40 du_e, dv_e | |
41 du_s, dv_s | |
42 du_n, dv_n | |
43 | |
44 % Borrowing constants | |
45 theta_M_u, theta_M_v | |
46 theta_R_u, theta_R_v | |
47 theta_H_u, theta_H_v | |
48 | |
49 % Temporary, only used for nonconforming interfaces but should be removed. | |
50 lambda | |
51 end | |
52 | |
53 methods | |
54 % Implements a*div(b*grad(u)) as a SBP scheme | |
55 % TODO: Implement proper H, it should be the real physical quadrature, the logic quadrature may be but in a separate variable (H_logic?) | |
56 | |
57 function obj = LaplaceCurvilinearNew(g, order, a, b, opSet) | |
58 default_arg('opSet',@sbp.D2Variable); | |
59 default_arg('a', 1); | |
60 default_arg('b', @(x,y) 0*x + 1); | |
61 | |
62 % assert(isa(g, 'grid.Curvilinear')) | |
63 if isa(a, 'function_handle') | |
64 a = grid.evalOn(g, a); | |
65 end | |
66 | |
67 % If a is scalar | |
68 if length(a) == 1 | |
69 a = a*ones(g.N(), 1); | |
70 end | |
71 a = spdiag(a); | |
72 | |
73 if isa(b, 'function_handle') | |
74 b = grid.evalOn(g, b); | |
75 end | |
76 | |
77 % If b is scalar | |
78 if length(b) == 1 | |
79 % b = b*speye(g.N(), g.N()); | |
80 b = b*ones(g.N(), 1); | |
81 end | |
82 b = spdiag(b); | |
83 | |
84 dim = 2; | |
85 m = g.size(); | |
86 m_u = m(1); | |
87 m_v = m(2); | |
88 m_tot = g.N(); | |
89 | |
90 % 1D operators | |
91 ops_u = opSet(m_u, {0, 1}, order); | |
92 ops_v = opSet(m_v, {0, 1}, order); | |
93 | |
94 h_u = ops_u.h; | |
95 h_v = ops_v.h; | |
96 | |
97 I_u = speye(m_u); | |
98 I_v = speye(m_v); | |
99 | |
100 D1_u = ops_u.D1; | |
101 D2_u = ops_u.D2; | |
102 H_u = ops_u.H; | |
103 Hi_u = ops_u.HI; | |
104 e_l_u = ops_u.e_l; | |
105 e_r_u = ops_u.e_r; | |
106 d1_l_u = ops_u.d1_l; | |
107 d1_r_u = ops_u.d1_r; | |
108 | |
109 D1_v = ops_v.D1; | |
110 D2_v = ops_v.D2; | |
111 H_v = ops_v.H; | |
112 Hi_v = ops_v.HI; | |
113 e_l_v = ops_v.e_l; | |
114 e_r_v = ops_v.e_r; | |
115 d1_l_v = ops_v.d1_l; | |
116 d1_r_v = ops_v.d1_r; | |
117 | |
118 | |
119 % Logical operators | |
120 Du = kr(D1_u,I_v); | |
121 Dv = kr(I_u,D1_v); | |
122 obj.Hu = kr(H_u,I_v); | |
123 obj.Hv = kr(I_u,H_v); | |
124 obj.Hiu = kr(Hi_u,I_v); | |
125 obj.Hiv = kr(I_u,Hi_v); | |
126 | |
127 e_w = kr(e_l_u,I_v); | |
128 e_e = kr(e_r_u,I_v); | |
129 e_s = kr(I_u,e_l_v); | |
130 e_n = kr(I_u,e_r_v); | |
131 obj.du_w = kr(d1_l_u,I_v); | |
132 obj.dv_w = (e_w'*Dv)'; | |
133 obj.du_e = kr(d1_r_u,I_v); | |
134 obj.dv_e = (e_e'*Dv)'; | |
135 obj.du_s = (e_s'*Du)'; | |
136 obj.dv_s = kr(I_u,d1_l_v); | |
137 obj.du_n = (e_n'*Du)'; | |
138 obj.dv_n = kr(I_u,d1_r_v); | |
139 | |
140 | |
141 % Metric coefficients | |
142 coords = g.points(); | |
143 x = coords(:,1); | |
144 y = coords(:,2); | |
145 | |
146 x_u = Du*x; | |
147 x_v = Dv*x; | |
148 y_u = Du*y; | |
149 y_v = Dv*y; | |
150 | |
151 J = x_u.*y_v - x_v.*y_u; | |
152 a11 = 1./J .* (x_v.^2 + y_v.^2); | |
153 a12 = -1./J .* (x_u.*x_v + y_u.*y_v); | |
154 a22 = 1./J .* (x_u.^2 + y_u.^2); | |
155 lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); | |
156 | |
157 K = cell(dim, dim); | |
158 K{1,1} = spdiag(y_v./J); | |
159 K{1,2} = spdiag(-y_u./J); | |
160 K{2,1} = spdiag(-x_v./J); | |
161 K{2,2} = spdiag(x_u./J); | |
162 obj.K = K; | |
163 | |
164 obj.x_u = x_u; | |
165 obj.x_v = x_v; | |
166 obj.y_u = y_u; | |
167 obj.y_v = y_v; | |
168 | |
169 % Assemble full operators | |
170 L_12 = spdiag(a12); | |
171 Duv = Du*b*L_12*Dv; | |
172 Dvu = Dv*b*L_12*Du; | |
173 | |
174 Duu = sparse(m_tot); | |
175 Dvv = sparse(m_tot); | |
176 ind = grid.funcToMatrix(g, 1:m_tot); | |
177 | |
178 for i = 1:m_v | |
179 b_a11 = b*a11; | |
180 D = D2_u(b_a11(ind(:,i))); | |
181 p = ind(:,i); | |
182 Duu(p,p) = D; | |
183 end | |
184 | |
185 for i = 1:m_u | |
186 b_a22 = b*a22; | |
187 D = D2_v(b_a22(ind(i,:))); | |
188 p = ind(i,:); | |
189 Dvv(p,p) = D; | |
190 end | |
191 | |
192 | |
193 % Physical operators | |
194 obj.J = spdiag(J); | |
195 obj.Ji = spdiag(1./J); | |
196 | |
197 obj.D = obj.Ji*a*(Duu + Duv + Dvu + Dvv); | |
198 obj.H = obj.J*kr(H_u,H_v); | |
199 obj.Hi = obj.Ji*kr(Hi_u,Hi_v); | |
200 | |
201 obj.e_w = e_w; | |
202 obj.e_e = e_e; | |
203 obj.e_s = e_s; | |
204 obj.e_n = e_n; | |
205 | |
206 %% normal derivatives | |
207 I_w = ind(1,:); | |
208 I_e = ind(end,:); | |
209 I_s = ind(:,1); | |
210 I_n = ind(:,end); | |
211 | |
212 a11_w = spdiag(a11(I_w)); | |
213 a12_w = spdiag(a12(I_w)); | |
214 a11_e = spdiag(a11(I_e)); | |
215 a12_e = spdiag(a12(I_e)); | |
216 a22_s = spdiag(a22(I_s)); | |
217 a12_s = spdiag(a12(I_s)); | |
218 a22_n = spdiag(a22(I_n)); | |
219 a12_n = spdiag(a12(I_n)); | |
220 | |
221 s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2); | |
222 s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2); | |
223 s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2); | |
224 s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2); | |
225 | |
226 obj.d_w = -1*(spdiag(1./s_w)*(a11_w*obj.du_w' + a12_w*obj.dv_w'))'; | |
227 obj.d_e = (spdiag(1./s_e)*(a11_e*obj.du_e' + a12_e*obj.dv_e'))'; | |
228 obj.d_s = -1*(spdiag(1./s_s)*(a22_s*obj.dv_s' + a12_s*obj.du_s'))'; | |
229 obj.d_n = (spdiag(1./s_n)*(a22_n*obj.dv_n' + a12_n*obj.du_n'))'; | |
230 | |
231 obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; | |
232 obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; | |
233 | |
234 %% Boundary inner products | |
235 obj.H_w = H_v*spdiag(s_w); | |
236 obj.H_e = H_v*spdiag(s_e); | |
237 obj.H_s = H_u*spdiag(s_s); | |
238 obj.H_n = H_u*spdiag(s_n); | |
239 | |
240 % Misc. | |
241 obj.m = m; | |
242 obj.h = [h_u h_v]; | |
243 obj.order = order; | |
244 obj.grid = g; | |
245 obj.dim = dim; | |
246 | |
247 obj.a = a; | |
248 obj.weight = inv(a); | |
249 obj.b = b; | |
250 obj.a11 = a11; | |
251 obj.a12 = a12; | |
252 obj.a22 = a22; | |
253 obj.s_w = spdiag(s_w); | |
254 obj.s_e = spdiag(s_e); | |
255 obj.s_s = spdiag(s_s); | |
256 obj.s_n = spdiag(s_n); | |
257 | |
258 obj.theta_M_u = h_u*ops_u.borrowing.M.d1; | |
259 obj.theta_M_v = h_v*ops_v.borrowing.M.d1; | |
260 | |
261 obj.theta_R_u = h_u*ops_u.borrowing.R.delta_D; | |
262 obj.theta_R_v = h_v*ops_v.borrowing.R.delta_D; | |
263 | |
264 obj.theta_H_u = h_u*ops_u.borrowing.H11; | |
265 obj.theta_H_v = h_v*ops_v.borrowing.H11; | |
266 | |
267 % Temporary | |
268 obj.lambda = lambda; | |
269 end | |
270 | |
271 | |
272 % Closure functions return the opertors applied to the own doamin to close the boundary | |
273 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
274 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
275 % type is a string specifying the type of boundary condition if there are several. | |
276 % data is a function returning the data that should be applied at the boundary. | |
277 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
278 % neighbour_boundary is a string specifying which boundary to interface to. | |
279 function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) | |
280 default_arg('type','neumann'); | |
281 default_arg('parameter', []); | |
282 | |
283 e = obj.getBoundaryOperator('e', boundary); | |
284 d = obj.getBoundaryOperator('d', boundary); | |
285 H_b = obj.getBoundaryQuadrature(boundary); | |
286 s_b = obj.getBoundaryScaling(boundary); | |
287 [th_H, ~, th_R] = obj.getBoundaryBorrowing(boundary); | |
288 m = obj.getBoundaryNumber(boundary); | |
289 | |
290 K = obj.K; | |
291 J = obj.J; | |
292 Hi = obj.Hi; | |
293 a = obj.a; | |
294 b_b = e'*obj.b*e; | |
295 | |
296 switch type | |
297 % Dirichlet boundary condition | |
298 case {'D','d','dirichlet'} | |
299 tuning = 1.0; | |
300 | |
301 sigma = 0*b_b; | |
302 for i = 1:obj.dim | |
303 sigma = sigma + e'*J*K{i,m}*K{i,m}*e; | |
304 end | |
305 sigma = sigma/s_b; | |
306 tau = tuning*(1/th_R + obj.dim/th_H)*sigma; | |
307 | |
308 closure = a*Hi*d*b_b*H_b*e' ... | |
309 -a*Hi*e*tau*b_b*H_b*e'; | |
310 | |
311 penalty = -a*Hi*d*b_b*H_b ... | |
312 +a*Hi*e*tau*b_b*H_b; | |
313 | |
314 | |
315 % Neumann boundary condition. Note that the penalty is for du/dn and not b*du/dn. | |
316 case {'N','n','neumann'} | |
317 tau1 = -1; | |
318 tau2 = 0; | |
319 tau = (tau1*e + tau2*d)*H_b; | |
320 | |
321 closure = a*Hi*tau*b_b*d'; | |
322 penalty = -a*Hi*tau*b_b; | |
323 | |
324 | |
325 % Unknown, boundary condition | |
326 otherwise | |
327 error('No such boundary condition: type = %s',type); | |
328 end | |
329 end | |
330 | |
331 % type Struct that specifies the interface coupling. | |
332 % Fields: | |
333 % -- tuning: penalty strength, defaults to 1.2 | |
334 % -- interpolation: type of interpolation, default 'none' | |
335 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
336 | |
337 defaultType.coupling = 'sat'; | |
338 defaultType.tuning = 1.0; | |
339 defaultType.interpolation = 'none'; | |
340 default_struct('type', defaultType); | |
341 | |
342 switch type.coupling | |
343 case {'cg', 'CG'} | |
344 [closure, penalty] = interfaceCG(obj,boundary,neighbour_scheme,neighbour_boundary,type); | |
345 case {'sat', 'SAT'} | |
346 switch type.interpolation | |
347 case {'none', ''} | |
348 [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); | |
349 case {'op','OP'} | |
350 [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); | |
351 otherwise | |
352 error('Unknown type of interpolation: %s ', type.interpolation); | |
353 end | |
354 otherwise | |
355 error('Unknown type of coupling: %s ', type.coupling); | |
356 end | |
357 end | |
358 | |
359 function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
360 tuning = type.tuning; | |
361 | |
362 dim = obj.dim; | |
363 % u denotes the solution in the own domain | |
364 % v denotes the solution in the neighbour domain | |
365 u = obj; | |
366 v = neighbour_scheme; | |
367 | |
368 % Boundary operators, u | |
369 e_u = u.getBoundaryOperator('e', boundary); | |
370 d_u = u.getBoundaryOperator('d', boundary); | |
371 s_b_u = u.getBoundaryScaling(boundary); | |
372 [th_H_u, ~, th_R_u] = u.getBoundaryBorrowing(boundary); | |
373 m_u = u.getBoundaryNumber(boundary); | |
374 | |
375 % Coefficients, u | |
376 K_u = u.K; | |
377 J_u = u.J; | |
378 b_b_u = e_u'*u.b*e_u; | |
379 | |
380 % Boundary operators, v | |
381 e_v = v.getBoundaryOperator('e', neighbour_boundary); | |
382 d_v = v.getBoundaryOperator('d', neighbour_boundary); | |
383 s_b_v = v.getBoundaryScaling(neighbour_boundary); | |
384 [th_H_v, ~, th_R_v] = v.getBoundaryBorrowing(neighbour_boundary); | |
385 m_v = v.getBoundaryNumber(neighbour_boundary); | |
386 | |
387 % BUGFIX?!?!? | |
388 if (strcmp(boundary,'s') && strcmp(neighbour_boundary,'e')) || (strcmp(boundary,'e') && strcmp(neighbour_boundary,'s')) | |
389 e_v = fliplr(e_v); | |
390 d_v = fliplr(d_v); | |
391 s_b_v = rot90(s_b_v,2); | |
392 end | |
393 | |
394 % Coefficients, v | |
395 K_v = v.K; | |
396 J_v = v.J; | |
397 b_b_v = e_v'*v.b*e_v; | |
398 | |
399 %--- Penalty strength tau ------------- | |
400 sigma_u = 0*b_b_u; | |
401 sigma_v = 0*b_b_v; | |
402 for i = 1:obj.dim | |
403 sigma_u = sigma_u + e_u'*J_u*K_u{i,m_u}*K_u{i,m_u}*e_u; | |
404 sigma_v = sigma_v + e_v'*J_v*K_v{i,m_v}*K_v{i,m_v}*e_v; | |
405 end | |
406 sigma_u = sigma_u/s_b_u; | |
407 sigma_v = sigma_v/s_b_v; | |
408 | |
409 tau_R_u = 1/th_R_u*sigma_u; | |
410 tau_R_v = 1/th_R_v*sigma_v; | |
411 | |
412 tau_H_u = dim*1/th_H_u*sigma_u; | |
413 tau_H_v = dim*1/th_H_v*sigma_v; | |
414 | |
415 tau = 1/4*tuning*(b_b_u*(tau_R_u + tau_H_u) + b_b_v*(tau_R_v + tau_H_v)); | |
416 %-------------------------------------- | |
417 | |
418 % Operators/coefficients that are only required from this side | |
419 Hi = u.Hi; | |
420 H_b = u.getBoundaryQuadrature(boundary); | |
421 a = u.a; | |
422 | |
423 closure = 1/2*a*Hi*d_u*b_b_u*H_b*e_u' ... | |
424 -1/2*a*Hi*e_u*H_b*b_b_u*d_u' ... | |
425 -a*Hi*e_u*tau*H_b*e_u'; | |
426 | |
427 penalty = -1/2*a*Hi*d_u*b_b_u*H_b*e_v' ... | |
428 -1/2*a*Hi*e_u*H_b*b_b_v*d_v' ... | |
429 +a*Hi*e_u*tau*H_b*e_v'; | |
430 end | |
431 | |
432 function [closure, penalty] = interfaceCG(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
433 | |
434 % There is no penalty, only a closure. And the closure is the same as for Neumann BC | |
435 e = obj.getBoundaryOperator('e', boundary); | |
436 d = obj.getBoundaryOperator('d', boundary); | |
437 H_b = obj.getBoundaryQuadrature(boundary); | |
438 | |
439 e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); | |
440 | |
441 Hi = obj.Hi; | |
442 a = obj.a; | |
443 b_b = e'*obj.b*e; | |
444 | |
445 tau1 = -1; | |
446 tau2 = 0; | |
447 tau = (tau1*e + tau2*d)*H_b; | |
448 | |
449 closure = a*Hi*tau*b_b*d'; | |
450 | |
451 % Zero penalty of correct dimensions | |
452 penalty = 0*e*e_v'; | |
453 end | |
454 | |
455 function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) | |
456 | |
457 % TODO: Make this work for curvilinear grids | |
458 warning('LaplaceCurvilinear: Non-conforming grid interpolation only works for Cartesian grids.'); | |
459 warning('LaplaceCurvilinear: Non-conforming interface uses Virtas penalty strength'); | |
460 warning('LaplaceCurvilinear: Non-conforming interface assumes that b is constant'); | |
461 | |
462 % User can request special interpolation operators by specifying type.interpOpSet | |
463 default_field(type, 'interpOpSet', @sbp.InterpOpsOP); | |
464 interpOpSet = type.interpOpSet; | |
465 tuning = type.tuning; | |
466 | |
467 | |
468 % u denotes the solution in the own domain | |
469 % v denotes the solution in the neighbour domain | |
470 e_u = obj.getBoundaryOperator('e', boundary); | |
471 d_u = obj.getBoundaryOperator('d', boundary); | |
472 H_b_u = obj.getBoundaryQuadrature(boundary); | |
473 I_u = obj.getBoundaryIndices(boundary); | |
474 [~, gamm_u] = obj.getBoundaryBorrowing(boundary); | |
475 | |
476 e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); | |
477 d_v = neighbour_scheme.getBoundaryOperator('d', neighbour_boundary); | |
478 H_b_v = neighbour_scheme.getBoundaryQuadrature(neighbour_boundary); | |
479 I_v = neighbour_scheme.getBoundaryIndices(neighbour_boundary); | |
480 [~, gamm_v] = neighbour_scheme.getBoundaryBorrowing(neighbour_boundary); | |
481 | |
482 | |
483 % Find the number of grid points along the interface | |
484 m_u = size(e_u, 2); | |
485 m_v = size(e_v, 2); | |
486 | |
487 Hi = obj.Hi; | |
488 a = obj.a; | |
489 | |
490 u = obj; | |
491 v = neighbour_scheme; | |
492 | |
493 b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; | |
494 b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; | |
495 b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; | |
496 b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; | |
497 | |
498 tau_u = -1./(4*b1_u) -1./(4*b2_u); | |
499 tau_v = -1./(4*b1_v) -1./(4*b2_v); | |
500 | |
501 tau_u = tuning * spdiag(tau_u); | |
502 tau_v = tuning * spdiag(tau_v); | |
503 beta_u = tau_v; | |
504 | |
505 % Build interpolation operators | |
506 intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); | |
507 Iu2v = intOps.Iu2v; | |
508 Iv2u = intOps.Iv2u; | |
509 | |
510 closure = a*Hi*e_u*tau_u*H_b_u*e_u' + ... | |
511 a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*Iu2v.good*e_u' + ... | |
512 a*1/2*Hi*d_u*H_b_u*e_u' + ... | |
513 -a*1/2*Hi*e_u*H_b_u*d_u'; | |
514 | |
515 penalty = -a*Hi*e_u*tau_u*H_b_u*Iv2u.good*e_v' + ... | |
516 -a*Hi*e_u*H_b_u*Iv2u.bad*beta_u*e_v' + ... | |
517 -a*1/2*Hi*d_u*H_b_u*Iv2u.good*e_v' + ... | |
518 -a*1/2*Hi*e_u*H_b_u*Iv2u.bad*d_v'; | |
519 | |
520 end | |
521 | |
522 % Returns the boundary operator op for the boundary specified by the string boundary. | |
523 % op -- string | |
524 % boundary -- string | |
525 function o = getBoundaryOperator(obj, op, boundary) | |
526 assertIsMember(op, {'e', 'd'}) | |
527 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
528 | |
529 o = obj.([op, '_', boundary]); | |
530 end | |
531 | |
532 % Returns square boundary quadrature matrix, of dimension | |
533 % corresponding to the number of boundary points | |
534 % | |
535 % boundary -- string | |
536 function H_b = getBoundaryQuadrature(obj, boundary) | |
537 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
538 | |
539 H_b = obj.(['H_', boundary]); | |
540 end | |
541 | |
542 % Returns square boundary quadrature scaling matrix, of dimension | |
543 % corresponding to the number of boundary points | |
544 % | |
545 % boundary -- string | |
546 function s_b = getBoundaryScaling(obj, boundary) | |
547 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
548 | |
549 s_b = obj.(['s_', boundary]); | |
550 end | |
551 | |
552 % Returns the coordinate number corresponding to the boundary | |
553 % | |
554 % boundary -- string | |
555 function m = getBoundaryNumber(obj, boundary) | |
556 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
557 | |
558 switch boundary | |
559 case {'w', 'e'} | |
560 m = 1; | |
561 case {'s', 'n'} | |
562 m = 2; | |
563 end | |
564 end | |
565 | |
566 % Returns the indices of the boundary points in the grid matrix | |
567 % boundary -- string | |
568 function I = getBoundaryIndices(obj, boundary) | |
569 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
570 | |
571 ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); | |
572 switch boundary | |
573 case 'w' | |
574 I = ind(1,:); | |
575 case 'e' | |
576 I = ind(end,:); | |
577 case 's' | |
578 I = ind(:,1)'; | |
579 case 'n' | |
580 I = ind(:,end)'; | |
581 end | |
582 end | |
583 | |
584 % Returns borrowing constant gamma | |
585 % boundary -- string | |
586 function [theta_H, theta_M, theta_R] = getBoundaryBorrowing(obj, boundary) | |
587 assertIsMember(boundary, {'w', 'e', 's', 'n'}) | |
588 | |
589 switch boundary | |
590 case {'w','e'} | |
591 theta_H = obj.theta_H_u; | |
592 theta_M = obj.theta_M_u; | |
593 theta_R = obj.theta_R_u; | |
594 case {'s','n'} | |
595 theta_H = obj.theta_H_v; | |
596 theta_M = obj.theta_M_v; | |
597 theta_R = obj.theta_R_v; | |
598 end | |
599 end | |
600 | |
601 function N = size(obj) | |
602 N = prod(obj.m); | |
603 end | |
604 end | |
605 end |