Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_compatible_halfvariable_2.m @ 261:6009f2712d13 operator_remake
Moved and renamned all implementations.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Thu, 08 Sep 2016 15:35:45 +0200 |
parents | |
children | bfa130b7abf6 |
comparison
equal
deleted
inserted
replaced
260:b4116ce49ac4 | 261:6009f2712d13 |
---|---|
1 % Returns D2 as a function handle | |
2 function [H, HI, D1, D2, D3, D4, e_1, e_m, M4, Q, S2_1,... | |
3 S2_m, S3_1, S3_m, S_1, S_m] = d4_compatible_halfvariable_2(m,h) | |
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
5 %%% 4:de ordn. SBP Finita differens %%% | |
6 %%% operatorer framtagna av Ken Mattsson %%% | |
7 %%% %%% | |
8 %%% 6 randpunkter, diagonal norm %%% | |
9 %%% %%% | |
10 %%% Datum: 2013-11-11 %%% | |
11 %%% %%% | |
12 %%% %%% | |
13 %%% H (Normen) %%% | |
14 %%% D1 (approx f?rsta derivatan) %%% | |
15 %%% D2 (approx andra derivatan) %%% | |
16 %%% D3 (approx tredje derivatan) %%% | |
17 %%% D2 (approx fj?rde derivatan) %%% | |
18 %%% %%% | |
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
20 | |
21 % M?ste ange antal punkter (m) och stegl?ngd (h) | |
22 % Notera att dessa opetratorer ?r framtagna f?r att anv?ndas n?r | |
23 % vi har 3de och 4de derivator i v?r PDE | |
24 % I annat fall anv?nd de "traditionella" som har noggrannare | |
25 % randsplutningar f?r D1 och D2 | |
26 | |
27 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, | |
28 % vilket ?r n?dv?ndigt f?r stabilitet | |
29 | |
30 H=diag(ones(m,1),0);H(1,1)=1/2;H(m,m)=1/2; | |
31 | |
32 | |
33 H=H*h; | |
34 HI=inv(H); | |
35 | |
36 | |
37 % First derivative SBP operator, 1st order accurate at first 6 boundary points | |
38 | |
39 q1=1/2; | |
40 Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
41 | |
42 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); | |
43 | |
44 | |
45 e_1=zeros(m,1);e_1(1)=1; | |
46 e_m=zeros(m,1);e_m(m)=1; | |
47 | |
48 | |
49 D1=HI*(Q-1/2*e_1*e_1'+1/2*e_m*e_m') ; | |
50 | |
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
52 | |
53 | |
54 | |
55 % Second derivative, 1st order accurate at first boundary points | |
56 | |
57 % below for constant coefficients | |
58 % m1=-1;m0=2; | |
59 % M=m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);M(1,1)=1;M(m,m)=1; | |
60 % M=M/h; | |
61 %D2=HI*(-M-e_1*S_1+e_m*S_m); | |
62 | |
63 % Below for variable coefficients | |
64 % Require a vector c with the koeffients | |
65 | |
66 S_U=[-3/2 2 -1/2]/h; | |
67 S_1=zeros(1,m); | |
68 S_1(1:3)=S_U; | |
69 S_m=zeros(1,m); | |
70 S_m(m-2:m)=fliplr(-S_U); | |
71 | |
72 S_1 = S_1'; | |
73 S_m = S_m'; | |
74 | |
75 M=sparse(m,m); | |
76 e_1 = sparse(e_1); | |
77 e_m = sparse(e_m); | |
78 S_1 = sparse(S_1); | |
79 S_m = sparse(S_m); | |
80 | |
81 scheme_width = 3; | |
82 scheme_radius = (scheme_width-1)/2; | |
83 r = (1+scheme_radius):(m-scheme_radius); | |
84 | |
85 function D2 = D2_fun(c) | |
86 | |
87 Mm1 = -c(r-1)/2 - c(r)/2; | |
88 M0 = c(r-1)/2 + c(r) + c(r+1)/2; | |
89 Mp1 = -c(r)/2 - c(r+1)/2; | |
90 | |
91 M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m); | |
92 | |
93 | |
94 M(1:2,1:2)=[c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;]; | |
95 M(m-1:m,m-1:m)=[c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;]; | |
96 M=M/h; | |
97 | |
98 D2=HI*(-M-c(1)*e_1*S_1'+c(m)*e_m*S_m'); | |
99 end | |
100 D2 = @D2_fun; | |
101 | |
102 | |
103 | |
104 | |
105 | |
106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
107 | |
108 | |
109 | |
110 % Third derivative, 1st order accurate at first 6 boundary points | |
111 | |
112 q2=1/2;q1=-1; | |
113 Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
114 | |
115 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); | |
116 | |
117 | |
118 Q3_U = [0 -0.13e2 / 0.16e2 0.7e1 / 0.8e1 -0.1e1 / 0.16e2; 0.13e2 / 0.16e2 0 -0.23e2 / 0.16e2 0.5e1 / 0.8e1; -0.7e1 / 0.8e1 0.23e2 / 0.16e2 0 -0.17e2 / 0.16e2; 0.1e1 / 0.16e2 -0.5e1 / 0.8e1 0.17e2 / 0.16e2 0;]; | |
119 Q3(1:4,1:4)=Q3_U; | |
120 Q3(m-3:m,m-3:m)=flipud( fliplr( -Q3_U ) ); | |
121 Q3=Q3/h^2; | |
122 | |
123 | |
124 | |
125 S2_U=[1 -2 1;]/h^2; | |
126 S2_1=zeros(1,m); | |
127 S2_1(1:3)=S2_U; | |
128 S2_m=zeros(1,m); | |
129 S2_m(m-2:m)=fliplr(S2_U); | |
130 S2_1 = S2_1'; | |
131 S2_m = S2_m'; | |
132 | |
133 | |
134 | |
135 D3=HI*(Q3 - e_1*S2_1' + e_m*S2_m' +1/2*S_1*S_1' -1/2*S_m*S_m' ) ; | |
136 | |
137 % Fourth derivative, 0th order accurate at first 6 boundary points (still | |
138 % yield 4th order convergence if stable: for example u_tt=-u_xxxx | |
139 | |
140 m2=1;m1=-4;m0=6; | |
141 M4=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); | |
142 | |
143 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); | |
144 | |
145 M4_U=[0.13e2 / 0.10e2 -0.12e2 / 0.5e1 0.9e1 / 0.10e2 0.1e1 / 0.5e1; -0.12e2 / 0.5e1 0.26e2 / 0.5e1 -0.16e2 / 0.5e1 0.2e1 / 0.5e1; 0.9e1 / 0.10e2 -0.16e2 / 0.5e1 0.47e2 / 0.10e2 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;]; | |
146 | |
147 | |
148 M4(1:4,1:4)=M4_U; | |
149 | |
150 M4(m-3:m,m-3:m)=flipud( fliplr( M4_U ) ); | |
151 M4=M4/h^3; | |
152 | |
153 S3_U=[-1 3 -3 1;]/h^3; | |
154 S3_1=zeros(1,m); | |
155 S3_1(1:4)=S3_U; | |
156 S3_m=zeros(1,m); | |
157 S3_m(m-3:m)=fliplr(-S3_U); | |
158 S3_1 = S3_1'; | |
159 S3_m = S3_m'; | |
160 | |
161 D4=HI*(M4-e_1*S3_1'+e_m*S3_m' + S_1*S2_1'-S_m*S2_m'); | |
162 end |