Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d1_noneq_minimal_6.m @ 261:6009f2712d13 operator_remake
Moved and renamned all implementations.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Thu, 08 Sep 2016 15:35:45 +0200 |
parents | |
children | bfa130b7abf6 |
comparison
equal
deleted
inserted
replaced
260:b4116ce49ac4 | 261:6009f2712d13 |
---|---|
1 function [D1,H,x,h] = d1_noneq_minimal_6(N,L) | |
2 | |
3 % L: Domain length | |
4 % N: Number of grid points | |
5 if(nargin < 2) | |
6 L = 1; | |
7 end | |
8 | |
9 % BP: Number of boundary points | |
10 % m: Number of nonequidistant spacings | |
11 % order: Accuracy of interior stencil | |
12 BP = 5; | |
13 m = 2; | |
14 order = 6; | |
15 | |
16 %%%% Non-equidistant grid points %%%%% | |
17 x0 = 0.0000000000000e+00; | |
18 x1 = 4.0842950991998e-01; | |
19 x2 = 1.1968523189207e+00; | |
20 x3 = 2.1968523189207e+00; | |
21 x4 = 3.1968523189207e+00; | |
22 x5 = 4.1968523189207e+00; | |
23 | |
24 xb = zeros(m+1,1); | |
25 for i = 0:m | |
26 xb(i+1) = eval(['x' num2str(i)]); | |
27 end | |
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
29 | |
30 %%%% Compute h %%%%%%%%%% | |
31 h = L/(2*xb(end) + N-1-2*m); | |
32 %%%%%%%%%%%%%%%%%%%%%%%%% | |
33 | |
34 %%%% Define grid %%%%%%%% | |
35 x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; | |
36 %%%%%%%%%%%%%%%%%%%%%%%%% | |
37 | |
38 %%%% Norm matrix %%%%%%%% | |
39 P = zeros(BP,1); | |
40 %#ok<*NASGU> | |
41 P0 = 1.2740260779883e-01; | |
42 P1 = 6.1820981002054e-01; | |
43 P2 = 9.4308973897679e-01; | |
44 P3 = 1.0093019060199e+00; | |
45 P4 = 9.9884825610465e-01; | |
46 | |
47 for i = 0:BP-1 | |
48 P(i+1) = eval(['P' num2str(i)]); | |
49 end | |
50 | |
51 H = ones(N,1); | |
52 H(1:BP) = P; | |
53 H(end-BP+1:end) = flip(P); | |
54 H = spdiags(h*H,0,N,N); | |
55 %%%%%%%%%%%%%%%%%%%%%%%%% | |
56 | |
57 %%%% Q matrix %%%%%%%%%%% | |
58 | |
59 % interior stencil | |
60 switch order | |
61 case 2 | |
62 d = [-1/2,0,1/2]; | |
63 case 4 | |
64 d = [1/12,-2/3,0,2/3,-1/12]; | |
65 case 6 | |
66 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; | |
67 case 8 | |
68 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; | |
69 case 10 | |
70 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; | |
71 case 12 | |
72 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; | |
73 end | |
74 d = repmat(d,N,1); | |
75 Q = spdiags(d,-order/2:order/2,N,N); | |
76 | |
77 % Boundaries | |
78 Q0_0 = -5.0000000000000e-01; | |
79 Q0_1 = 6.3217364546846e-01; | |
80 Q0_2 = -1.6411963429825e-01; | |
81 Q0_3 = 3.6495407984639e-02; | |
82 Q0_4 = -4.5494191548490e-03; | |
83 Q0_5 = 0.0000000000000e+00; | |
84 Q0_6 = 0.0000000000000e+00; | |
85 Q0_7 = 0.0000000000000e+00; | |
86 Q1_0 = -6.3217364546846e-01; | |
87 Q1_1 = 0.0000000000000e+00; | |
88 Q1_2 = 8.0515625504417e-01; | |
89 Q1_3 = -2.0755653563249e-01; | |
90 Q1_4 = 3.4573926056780e-02; | |
91 Q1_5 = 0.0000000000000e+00; | |
92 Q1_6 = 0.0000000000000e+00; | |
93 Q1_7 = 0.0000000000000e+00; | |
94 Q2_0 = 1.6411963429825e-01; | |
95 Q2_1 = -8.0515625504417e-01; | |
96 Q2_2 = 0.0000000000000e+00; | |
97 Q2_3 = 7.9402676057785e-01; | |
98 Q2_4 = -1.6965680649860e-01; | |
99 Q2_5 = 1.6666666666667e-02; | |
100 Q2_6 = 0.0000000000000e+00; | |
101 Q2_7 = 0.0000000000000e+00; | |
102 Q3_0 = -3.6495407984639e-02; | |
103 Q3_1 = 2.0755653563249e-01; | |
104 Q3_2 = -7.9402676057785e-01; | |
105 Q3_3 = 0.0000000000000e+00; | |
106 Q3_4 = 7.5629896626333e-01; | |
107 Q3_5 = -1.5000000000000e-01; | |
108 Q3_6 = 1.6666666666667e-02; | |
109 Q3_7 = 0.0000000000000e+00; | |
110 Q4_0 = 4.5494191548490e-03; | |
111 Q4_1 = -3.4573926056780e-02; | |
112 Q4_2 = 1.6965680649860e-01; | |
113 Q4_3 = -7.5629896626333e-01; | |
114 Q4_4 = 0.0000000000000e+00; | |
115 Q4_5 = 7.5000000000000e-01; | |
116 Q4_6 = -1.5000000000000e-01; | |
117 Q4_7 = 1.6666666666667e-02; | |
118 for i = 1:BP | |
119 for j = 1:BP | |
120 Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
121 Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
122 end | |
123 end | |
124 %%%%%%%%%%%%%%%%%%%%%%%%%%% | |
125 | |
126 %%%% Difference operator %% | |
127 D1 = H\Q; | |
128 %%%%%%%%%%%%%%%%%%%%%%%%%%% |