Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d1_noneq_6.m @ 261:6009f2712d13 operator_remake
Moved and renamned all implementations.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Thu, 08 Sep 2016 15:35:45 +0200 |
parents | |
children | bfa130b7abf6 |
comparison
equal
deleted
inserted
replaced
260:b4116ce49ac4 | 261:6009f2712d13 |
---|---|
1 function [D1,H,x,h] = d1_noneq_6(N,L) | |
2 | |
3 % L: Domain length | |
4 % N: Number of grid points | |
5 if(nargin < 2) | |
6 L = 1; | |
7 end | |
8 | |
9 % BP: Number of boundary points | |
10 % m: Number of nonequidistant spacings | |
11 % order: Accuracy of interior stencil | |
12 BP = 6; | |
13 m = 3; | |
14 order = 6; | |
15 | |
16 %%%% Non-equidistant grid points %%%%% | |
17 x0 = 0.0000000000000e+00; | |
18 x1 = 4.4090263368623e-01; | |
19 x2 = 1.2855984345073e+00; | |
20 x3 = 2.2638953951239e+00; | |
21 x4 = 3.2638953951239e+00; | |
22 x5 = 4.2638953951239e+00; | |
23 x6 = 5.2638953951239e+00; | |
24 | |
25 xb = zeros(m+1,1); | |
26 for i = 0:m | |
27 xb(i+1) = eval(['x' num2str(i)]); | |
28 end | |
29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
30 | |
31 %%%% Compute h %%%%%%%%%% | |
32 h = L/(2*xb(end) + N-1-2*m); | |
33 %%%%%%%%%%%%%%%%%%%%%%%%% | |
34 | |
35 %%%% Define grid %%%%%%%% | |
36 x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; | |
37 %%%%%%%%%%%%%%%%%%%%%%%%% | |
38 | |
39 %%%% Norm matrix %%%%%%%% | |
40 P = zeros(BP,1); | |
41 %#ok<*NASGU> | |
42 P0 = 1.3030223027124e-01; | |
43 P1 = 6.8851501587715e-01; | |
44 P2 = 9.5166202564389e-01; | |
45 P3 = 9.9103890475697e-01; | |
46 P4 = 1.0028757074552e+00; | |
47 P5 = 9.9950151111941e-01; | |
48 | |
49 for i = 0:BP-1 | |
50 P(i+1) = eval(['P' num2str(i)]); | |
51 end | |
52 | |
53 H = ones(N,1); | |
54 H(1:BP) = P; | |
55 H(end-BP+1:end) = flip(P); | |
56 H = spdiags(h*H,0,N,N); | |
57 %%%%%%%%%%%%%%%%%%%%%%%%% | |
58 | |
59 %%%% Q matrix %%%%%%%%%%% | |
60 | |
61 % interior stencil | |
62 switch order | |
63 case 2 | |
64 d = [-1/2,0,1/2]; | |
65 case 4 | |
66 d = [1/12,-2/3,0,2/3,-1/12]; | |
67 case 6 | |
68 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; | |
69 case 8 | |
70 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; | |
71 case 10 | |
72 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; | |
73 case 12 | |
74 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; | |
75 end | |
76 d = repmat(d,N,1); | |
77 Q = spdiags(d,-order/2:order/2,N,N); | |
78 | |
79 % Boundaries | |
80 Q0_0 = -5.0000000000000e-01; | |
81 Q0_1 = 6.6042071945824e-01; | |
82 Q0_2 = -2.2104152954203e-01; | |
83 Q0_3 = 7.6243679810093e-02; | |
84 Q0_4 = -1.7298206716724e-02; | |
85 Q0_5 = 1.6753369904210e-03; | |
86 Q0_6 = 0.0000000000000e+00; | |
87 Q0_7 = 0.0000000000000e+00; | |
88 Q0_8 = 0.0000000000000e+00; | |
89 Q1_0 = -6.6042071945824e-01; | |
90 Q1_1 = 0.0000000000000e+00; | |
91 Q1_2 = 8.7352798702787e-01; | |
92 Q1_3 = -2.6581719253084e-01; | |
93 Q1_4 = 5.7458484948314e-02; | |
94 Q1_5 = -4.7485599871040e-03; | |
95 Q1_6 = 0.0000000000000e+00; | |
96 Q1_7 = 0.0000000000000e+00; | |
97 Q1_8 = 0.0000000000000e+00; | |
98 Q2_0 = 2.2104152954203e-01; | |
99 Q2_1 = -8.7352798702787e-01; | |
100 Q2_2 = 0.0000000000000e+00; | |
101 Q2_3 = 8.1707122038457e-01; | |
102 Q2_4 = -1.8881125503769e-01; | |
103 Q2_5 = 2.4226492138960e-02; | |
104 Q2_6 = 0.0000000000000e+00; | |
105 Q2_7 = 0.0000000000000e+00; | |
106 Q2_8 = 0.0000000000000e+00; | |
107 Q3_0 = -7.6243679810093e-02; | |
108 Q3_1 = 2.6581719253084e-01; | |
109 Q3_2 = -8.1707122038457e-01; | |
110 Q3_3 = 0.0000000000000e+00; | |
111 Q3_4 = 7.6798636652679e-01; | |
112 Q3_5 = -1.5715532552963e-01; | |
113 Q3_6 = 1.6666666666667e-02; | |
114 Q3_7 = 0.0000000000000e+00; | |
115 Q3_8 = 0.0000000000000e+00; | |
116 Q4_0 = 1.7298206716724e-02; | |
117 Q4_1 = -5.7458484948314e-02; | |
118 Q4_2 = 1.8881125503769e-01; | |
119 Q4_3 = -7.6798636652679e-01; | |
120 Q4_4 = 0.0000000000000e+00; | |
121 Q4_5 = 7.5266872305402e-01; | |
122 Q4_6 = -1.5000000000000e-01; | |
123 Q4_7 = 1.6666666666667e-02; | |
124 Q4_8 = 0.0000000000000e+00; | |
125 Q5_0 = -1.6753369904210e-03; | |
126 Q5_1 = 4.7485599871040e-03; | |
127 Q5_2 = -2.4226492138960e-02; | |
128 Q5_3 = 1.5715532552963e-01; | |
129 Q5_4 = -7.5266872305402e-01; | |
130 Q5_5 = 0.0000000000000e+00; | |
131 Q5_6 = 7.5000000000000e-01; | |
132 Q5_7 = -1.5000000000000e-01; | |
133 Q5_8 = 1.6666666666667e-02; | |
134 for i = 1:BP | |
135 for j = 1:BP | |
136 Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
137 Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
138 end | |
139 end | |
140 %%%%%%%%%%%%%%%%%%%%%%%%%%% | |
141 | |
142 %%%% Difference operator %% | |
143 D1 = H\Q; | |
144 %%%%%%%%%%%%%%%%%%%%%%%%%%% |