Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d1_noneq_4.m @ 261:6009f2712d13 operator_remake
Moved and renamned all implementations.
| author | Martin Almquist <martin.almquist@it.uu.se> |
|---|---|
| date | Thu, 08 Sep 2016 15:35:45 +0200 |
| parents | |
| children | bfa130b7abf6 |
comparison
equal
deleted
inserted
replaced
| 260:b4116ce49ac4 | 261:6009f2712d13 |
|---|---|
| 1 function [D1,H,x,h] = d1_noneq_4(N,L) | |
| 2 | |
| 3 % L: Domain length | |
| 4 % N: Number of grid points | |
| 5 if(nargin < 2) | |
| 6 L = 1; | |
| 7 end | |
| 8 | |
| 9 % BP: Number of boundary points | |
| 10 % m: Number of nonequidistant spacings | |
| 11 % order: Accuracy of interior stencil | |
| 12 BP = 4; | |
| 13 m = 2; | |
| 14 order = 4; | |
| 15 | |
| 16 %%%% Non-equidistant grid points %%%%% | |
| 17 x0 = 0.0000000000000e+00; | |
| 18 x1 = 6.8764546205559e-01; | |
| 19 x2 = 1.8022115125776e+00; | |
| 20 x3 = 2.8022115125776e+00; | |
| 21 x4 = 3.8022115125776e+00; | |
| 22 | |
| 23 xb = zeros(m+1,1); | |
| 24 for i = 0:m | |
| 25 xb(i+1) = eval(['x' num2str(i)]); | |
| 26 end | |
| 27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 28 | |
| 29 %%%% Compute h %%%%%%%%%% | |
| 30 h = L/(2*xb(end) + N-1-2*m); | |
| 31 %%%%%%%%%%%%%%%%%%%%%%%%% | |
| 32 | |
| 33 %%%% Define grid %%%%%%%% | |
| 34 x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; | |
| 35 %%%%%%%%%%%%%%%%%%%%%%%%% | |
| 36 | |
| 37 %%%% Norm matrix %%%%%%%% | |
| 38 P = zeros(BP,1); | |
| 39 %#ok<*NASGU> | |
| 40 P0 = 2.1259737557798e-01; | |
| 41 P1 = 1.0260290400758e+00; | |
| 42 P2 = 1.0775123588954e+00; | |
| 43 P3 = 9.8607273802835e-01; | |
| 44 | |
| 45 for i = 0:BP-1 | |
| 46 P(i+1) = eval(['P' num2str(i)]); | |
| 47 end | |
| 48 | |
| 49 H = ones(N,1); | |
| 50 H(1:BP) = P; | |
| 51 H(end-BP+1:end) = flip(P); | |
| 52 H = spdiags(h*H,0,N,N); | |
| 53 %%%%%%%%%%%%%%%%%%%%%%%%% | |
| 54 | |
| 55 %%%% Q matrix %%%%%%%%%%% | |
| 56 | |
| 57 % interior stencil | |
| 58 switch order | |
| 59 case 2 | |
| 60 d = [-1/2,0,1/2]; | |
| 61 case 4 | |
| 62 d = [1/12,-2/3,0,2/3,-1/12]; | |
| 63 case 6 | |
| 64 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; | |
| 65 case 8 | |
| 66 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; | |
| 67 case 10 | |
| 68 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; | |
| 69 case 12 | |
| 70 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; | |
| 71 end | |
| 72 d = repmat(d,N,1); | |
| 73 Q = spdiags(d,-order/2:order/2,N,N); | |
| 74 | |
| 75 % Boundaries | |
| 76 Q0_0 = -5.0000000000000e-01; | |
| 77 Q0_1 = 6.5605279837843e-01; | |
| 78 Q0_2 = -1.9875859409017e-01; | |
| 79 Q0_3 = 4.2705795711740e-02; | |
| 80 Q0_4 = 0.0000000000000e+00; | |
| 81 Q0_5 = 0.0000000000000e+00; | |
| 82 Q1_0 = -6.5605279837843e-01; | |
| 83 Q1_1 = 0.0000000000000e+00; | |
| 84 Q1_2 = 8.1236966439895e-01; | |
| 85 Q1_3 = -1.5631686602052e-01; | |
| 86 Q1_4 = 0.0000000000000e+00; | |
| 87 Q1_5 = 0.0000000000000e+00; | |
| 88 Q2_0 = 1.9875859409017e-01; | |
| 89 Q2_1 = -8.1236966439895e-01; | |
| 90 Q2_2 = 0.0000000000000e+00; | |
| 91 Q2_3 = 6.9694440364211e-01; | |
| 92 Q2_4 = -8.3333333333333e-02; | |
| 93 Q2_5 = 0.0000000000000e+00; | |
| 94 Q3_0 = -4.2705795711740e-02; | |
| 95 Q3_1 = 1.5631686602052e-01; | |
| 96 Q3_2 = -6.9694440364211e-01; | |
| 97 Q3_3 = 0.0000000000000e+00; | |
| 98 Q3_4 = 6.6666666666667e-01; | |
| 99 Q3_5 = -8.3333333333333e-02; | |
| 100 for i = 1:BP | |
| 101 for j = 1:BP | |
| 102 Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
| 103 Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
| 104 end | |
| 105 end | |
| 106 %%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 107 | |
| 108 %%%% Difference operator %% | |
| 109 D1 = H\Q; | |
| 110 %%%%%%%%%%%%%%%%%%%%%%%%%%% |
