Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d1_noneq_4.m @ 261:6009f2712d13 operator_remake
Moved and renamned all implementations.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Thu, 08 Sep 2016 15:35:45 +0200 |
parents | |
children | bfa130b7abf6 |
comparison
equal
deleted
inserted
replaced
260:b4116ce49ac4 | 261:6009f2712d13 |
---|---|
1 function [D1,H,x,h] = d1_noneq_4(N,L) | |
2 | |
3 % L: Domain length | |
4 % N: Number of grid points | |
5 if(nargin < 2) | |
6 L = 1; | |
7 end | |
8 | |
9 % BP: Number of boundary points | |
10 % m: Number of nonequidistant spacings | |
11 % order: Accuracy of interior stencil | |
12 BP = 4; | |
13 m = 2; | |
14 order = 4; | |
15 | |
16 %%%% Non-equidistant grid points %%%%% | |
17 x0 = 0.0000000000000e+00; | |
18 x1 = 6.8764546205559e-01; | |
19 x2 = 1.8022115125776e+00; | |
20 x3 = 2.8022115125776e+00; | |
21 x4 = 3.8022115125776e+00; | |
22 | |
23 xb = zeros(m+1,1); | |
24 for i = 0:m | |
25 xb(i+1) = eval(['x' num2str(i)]); | |
26 end | |
27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
28 | |
29 %%%% Compute h %%%%%%%%%% | |
30 h = L/(2*xb(end) + N-1-2*m); | |
31 %%%%%%%%%%%%%%%%%%%%%%%%% | |
32 | |
33 %%%% Define grid %%%%%%%% | |
34 x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; | |
35 %%%%%%%%%%%%%%%%%%%%%%%%% | |
36 | |
37 %%%% Norm matrix %%%%%%%% | |
38 P = zeros(BP,1); | |
39 %#ok<*NASGU> | |
40 P0 = 2.1259737557798e-01; | |
41 P1 = 1.0260290400758e+00; | |
42 P2 = 1.0775123588954e+00; | |
43 P3 = 9.8607273802835e-01; | |
44 | |
45 for i = 0:BP-1 | |
46 P(i+1) = eval(['P' num2str(i)]); | |
47 end | |
48 | |
49 H = ones(N,1); | |
50 H(1:BP) = P; | |
51 H(end-BP+1:end) = flip(P); | |
52 H = spdiags(h*H,0,N,N); | |
53 %%%%%%%%%%%%%%%%%%%%%%%%% | |
54 | |
55 %%%% Q matrix %%%%%%%%%%% | |
56 | |
57 % interior stencil | |
58 switch order | |
59 case 2 | |
60 d = [-1/2,0,1/2]; | |
61 case 4 | |
62 d = [1/12,-2/3,0,2/3,-1/12]; | |
63 case 6 | |
64 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; | |
65 case 8 | |
66 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; | |
67 case 10 | |
68 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; | |
69 case 12 | |
70 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; | |
71 end | |
72 d = repmat(d,N,1); | |
73 Q = spdiags(d,-order/2:order/2,N,N); | |
74 | |
75 % Boundaries | |
76 Q0_0 = -5.0000000000000e-01; | |
77 Q0_1 = 6.5605279837843e-01; | |
78 Q0_2 = -1.9875859409017e-01; | |
79 Q0_3 = 4.2705795711740e-02; | |
80 Q0_4 = 0.0000000000000e+00; | |
81 Q0_5 = 0.0000000000000e+00; | |
82 Q1_0 = -6.5605279837843e-01; | |
83 Q1_1 = 0.0000000000000e+00; | |
84 Q1_2 = 8.1236966439895e-01; | |
85 Q1_3 = -1.5631686602052e-01; | |
86 Q1_4 = 0.0000000000000e+00; | |
87 Q1_5 = 0.0000000000000e+00; | |
88 Q2_0 = 1.9875859409017e-01; | |
89 Q2_1 = -8.1236966439895e-01; | |
90 Q2_2 = 0.0000000000000e+00; | |
91 Q2_3 = 6.9694440364211e-01; | |
92 Q2_4 = -8.3333333333333e-02; | |
93 Q2_5 = 0.0000000000000e+00; | |
94 Q3_0 = -4.2705795711740e-02; | |
95 Q3_1 = 1.5631686602052e-01; | |
96 Q3_2 = -6.9694440364211e-01; | |
97 Q3_3 = 0.0000000000000e+00; | |
98 Q3_4 = 6.6666666666667e-01; | |
99 Q3_5 = -8.3333333333333e-02; | |
100 for i = 1:BP | |
101 for j = 1:BP | |
102 Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
103 Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
104 end | |
105 end | |
106 %%%%%%%%%%%%%%%%%%%%%%%%%%% | |
107 | |
108 %%%% Difference operator %% | |
109 D1 = H\Q; | |
110 %%%%%%%%%%%%%%%%%%%%%%%%%%% |