Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d1_gauss_4.m @ 431:5f4540e13f9b feature/quantumTriangles
Meged with default
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Wed, 08 Feb 2017 09:18:08 +0100 |
parents | 42c4f0b545d6 |
children | 0bc37a25ed88 |
comparison
equal
deleted
inserted
replaced
430:25053554524b | 431:5f4540e13f9b |
---|---|
1 function [D1,H,x,h,e_l,e_r] = d1_gauss_4(L) | |
2 | |
3 % L: Domain length | |
4 % N: Number of grid points | |
5 if(nargin < 2) | |
6 L = 1; | |
7 end | |
8 | |
9 N = 4; | |
10 | |
11 % Quadrature nodes on interval [-1, 1] | |
12 x = [ -0.8611363115940526; -0.3399810435848563; 0.3399810435848563; 0.8611363115940526]; | |
13 | |
14 % Shift nodes to [0,L] | |
15 x = (x+1)/2*L; | |
16 | |
17 % Boundary extrapolation operators | |
18 e_l = [1.5267881254572668; -0.8136324494869273; 0.4007615203116504; -0.1139171962819899]; | |
19 e_r = flipud(e_l); | |
20 e_l = sparse(e_l); | |
21 e_r = sparse(e_r); | |
22 | |
23 %%%% Compute approximate h %%%%%%%%%% | |
24 h = L/(N-1); | |
25 %%%%%%%%%%%%%%%%%%%%%%%%% | |
26 | |
27 %%%% Norm matrix on [-1,1] %%%%%%%% | |
28 P = sparse(N,N); | |
29 P(1,1) = 0.3478548451374539; | |
30 P(2,2) = 0.6521451548625461; | |
31 P(3,3) = 0.6521451548625461; | |
32 P(4,4) = 0.3478548451374539; | |
33 %%%%%%%%%%%%%%%%%%%%%%%%% | |
34 | |
35 %%%% Norm matrix on [0,L] %%%%%%%% | |
36 H = P*L/2; | |
37 %%%%%%%%%%%%%%%%%%%%%%%%% | |
38 | |
39 %%%% D1 on [-1,1] %%%%%%%% | |
40 D1 = sparse(N,N); | |
41 D1(1,1) = -3.3320002363522817; | |
42 D1(1,2) = 4.8601544156851962; | |
43 D1(1,3) = -2.1087823484951789; | |
44 D1(1,4) = 0.5806281691622644; | |
45 | |
46 D1(2,1) = -0.7575576147992339; | |
47 D1(2,2) = -0.3844143922232086; | |
48 D1(2,3) = 1.4706702312807167; | |
49 D1(2,4) = -0.3286982242582743; | |
50 | |
51 D1(3,1) = 0.3286982242582743; | |
52 D1(3,2) = -1.4706702312807167; | |
53 D1(3,3) = 0.3844143922232086; | |
54 D1(3,4) = 0.7575576147992339; | |
55 | |
56 D1(4,1) = -0.5806281691622644; | |
57 D1(4,2) = 2.1087823484951789; | |
58 D1(4,3) = -4.8601544156851962; | |
59 D1(4,4) = 3.3320002363522817; | |
60 %%%%%%%%%%%%%%%%%%%%%%%%% | |
61 | |
62 % D1 on [0,L] | |
63 D1 = D1*2/L; |