Mercurial > repos > public > sbplib
comparison +scheme/Beam.m @ 1108:5ec23b9bf360 feature/laplace_curvilinear_test
Merge with default
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Wed, 10 Apr 2019 11:00:27 -0700 |
parents | 0c504a21432d |
children |
comparison
equal
deleted
inserted
replaced
1087:867307f4d80f | 1108:5ec23b9bf360 |
---|---|
84 % neighbour_scheme is an instance of Scheme that should be interfaced to. | 84 % neighbour_scheme is an instance of Scheme that should be interfaced to. |
85 % neighbour_boundary is a string specifying which boundary to interface to. | 85 % neighbour_boundary is a string specifying which boundary to interface to. |
86 function [closure, penalty] = boundary_condition(obj,boundary,type) | 86 function [closure, penalty] = boundary_condition(obj,boundary,type) |
87 default_arg('type','dn'); | 87 default_arg('type','dn'); |
88 | 88 |
89 [e, d1, d2, d3] = obj.getBoundaryOperator({'e', 'd1', 'd2', 'd3'}, boundary); | 89 e = obj.getBoundaryOperator('e', boundary); |
90 d1 = obj.getBoundaryOperator('d1', boundary); | |
91 d2 = obj.getBoundaryOperator('d2', boundary); | |
92 d3 = obj.getBoundaryOperator('d3', boundary); | |
90 s = obj.getBoundarySign(boundary); | 93 s = obj.getBoundarySign(boundary); |
91 gamm = obj.gamm; | 94 gamm = obj.gamm; |
92 delt = obj.delt; | 95 delt = obj.delt; |
93 | 96 |
94 | 97 |
123 tau = s*a*d1; | 126 tau = s*a*d1; |
124 sig = -s*a*e; | 127 sig = -s*a*e; |
125 | 128 |
126 closure = obj.Hi*(tau*d2' + sig*d3'); | 129 closure = obj.Hi*(tau*d2' + sig*d3'); |
127 penalty{1} = -obj.Hi*tau; | 130 penalty{1} = -obj.Hi*tau; |
128 penalty{1} = -obj.Hi*sig; | 131 penalty{2} = -obj.Hi*sig; |
129 | 132 |
130 case 'e' | 133 case 'e' |
131 alpha = obj.alpha; | 134 alpha = obj.alpha; |
132 tuning = 1.1; | 135 tuning = 1.1; |
133 | 136 |
172 end | 175 end |
173 | 176 |
174 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary, type) | 177 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary, type) |
175 % u denotes the solution in the own domain | 178 % u denotes the solution in the own domain |
176 % v denotes the solution in the neighbour domain | 179 % v denotes the solution in the neighbour domain |
177 [e_u, d1_u, d2_u, d3_u] = obj.getBoundaryOperator({'e', 'd1', 'd2', 'd3'}, boundary); | 180 e_u = obj.getBoundaryOperator('e', boundary); |
181 d1_u = obj.getBoundaryOperator('d1', boundary); | |
182 d2_u = obj.getBoundaryOperator('d2', boundary); | |
183 d3_u = obj.getBoundaryOperator('d3', boundary); | |
178 s_u = obj.getBoundarySign(boundary); | 184 s_u = obj.getBoundarySign(boundary); |
179 | 185 |
180 [e_v, d1_v, d2_v, d3_v] = neighbour_scheme.getBoundaryOperator({'e', 'd1', 'd2', 'd3'}, neighbour_boundary); | 186 e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); |
187 d1_v = neighbour_scheme.getBoundaryOperator('d1', neighbour_boundary); | |
188 d2_v = neighbour_scheme.getBoundaryOperator('d2', neighbour_boundary); | |
189 d3_v = neighbour_scheme.getBoundaryOperator('d3', neighbour_boundary); | |
181 s_v = neighbour_scheme.getBoundarySign(neighbour_boundary); | 190 s_v = neighbour_scheme.getBoundarySign(neighbour_boundary); |
182 | 191 |
183 alpha_u = obj.alpha; | 192 alpha_u = obj.alpha; |
184 alpha_v = neighbour_scheme.alpha; | 193 alpha_v = neighbour_scheme.alpha; |
185 | 194 |
235 closure = obj.Hi*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); | 244 closure = obj.Hi*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); |
236 penalty = -obj.Hi*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); | 245 penalty = -obj.Hi*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); |
237 end | 246 end |
238 | 247 |
239 % Returns the boundary operator op for the boundary specified by the string boundary. | 248 % Returns the boundary operator op for the boundary specified by the string boundary. |
240 % op -- string or a cell array of strings | 249 % op -- string |
241 % boundary -- string | 250 % boundary -- string |
242 function varargout = getBoundaryOperator(obj, op, boundary) | 251 function o = getBoundaryOperator(obj, op, boundary) |
243 | 252 assertIsMember(op, {'e', 'd1', 'd2', 'd3'}) |
244 if ~ismember(boundary, {'l', 'r'}) | 253 assertIsMember(boundary, {'l', 'r'}) |
245 error('No such boundary: boundary = %s',boundary); | 254 |
246 end | 255 o = obj.([op, '_', boundary]); |
247 | 256 end |
248 if ~iscell(op) | 257 |
249 op = {op}; | 258 % Returns square boundary quadrature matrix, of dimension |
250 end | 259 % corresponding to the number of boundary points |
251 | 260 % |
252 for i = 1:numel(op) | 261 % boundary -- string |
253 switch op{i} | 262 % Note: for 1d diffOps, the boundary quadrature is the scalar 1. |
254 case 'e' | 263 function H_b = getBoundaryQuadrature(obj, boundary) |
255 switch boundary | 264 assertIsMember(boundary, {'l', 'r'}) |
256 case 'l' | 265 |
257 e = obj.e_l; | 266 H_b = 1; |
258 case 'r' | |
259 e = obj.e_r; | |
260 end | |
261 varargout{i} = e; | |
262 | |
263 case 'd1' | |
264 switch boundary | |
265 case 'l' | |
266 d1 = obj.d1_l; | |
267 case 'r' | |
268 d1 = obj.d1_r; | |
269 end | |
270 varargout{i} = d1; | |
271 end | |
272 | |
273 case 'd2' | |
274 switch boundary | |
275 case 'l' | |
276 d2 = obj.d2_l; | |
277 case 'r' | |
278 d2 = obj.d2_r; | |
279 end | |
280 varargout{i} = d2; | |
281 end | |
282 | |
283 case 'd3' | |
284 switch boundary | |
285 case 'l' | |
286 d3 = obj.d3_l; | |
287 case 'r' | |
288 d3 = obj.d3_r; | |
289 end | |
290 varargout{i} = d3; | |
291 end | |
292 end | |
293 end | 267 end |
294 | 268 |
295 % Returns the boundary sign. The right boundary is considered the positive boundary | 269 % Returns the boundary sign. The right boundary is considered the positive boundary |
296 % boundary -- string | 270 % boundary -- string |
297 function s = getBoundarySign(obj, boundary) | 271 function s = getBoundarySign(obj, boundary) |
272 assertIsMember(boundary, {'l', 'r'}) | |
273 | |
298 switch boundary | 274 switch boundary |
299 case {'r'} | 275 case {'r'} |
300 s = 1; | 276 s = 1; |
301 case {'l'} | 277 case {'l'} |
302 s = -1; | 278 s = -1; |
303 otherwise | |
304 error('No such boundary: boundary = %s',boundary); | |
305 end | 279 end |
306 end | 280 end |
307 | 281 |
308 function N = size(obj) | 282 function N = size(obj) |
309 N = obj.grid.N; | 283 N = obj.grid.N; |