Mercurial > repos > public > sbplib
comparison +scheme/Elastic2dVariable.m @ 868:57760d7088ad bcSetupExperiment
Merge with feature/grids
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 27 Jul 2018 10:39:12 -0700 |
parents | 1f6b2fb69225 |
children | b374a8aa9246 5751262b323b |
comparison
equal
deleted
inserted
replaced
867:d634d4deb263 | 868:57760d7088ad |
---|---|
1 classdef Elastic2dVariable < scheme.Scheme | |
2 | |
3 % Discretizes the elastic wave equation: | |
4 % rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i | |
5 % opSet should be cell array of opSets, one per dimension. This | |
6 % is useful if we have periodic BC in one direction. | |
7 | |
8 properties | |
9 m % Number of points in each direction, possibly a vector | |
10 h % Grid spacing | |
11 | |
12 grid | |
13 dim | |
14 | |
15 order % Order of accuracy for the approximation | |
16 | |
17 % Diagonal matrices for varible coefficients | |
18 LAMBDA % Variable coefficient, related to dilation | |
19 MU % Shear modulus, variable coefficient | |
20 RHO, RHOi % Density, variable | |
21 | |
22 D % Total operator | |
23 D1 % First derivatives | |
24 | |
25 % Second derivatives | |
26 D2_lambda | |
27 D2_mu | |
28 | |
29 % Traction operators used for BC | |
30 T_l, T_r | |
31 tau_l, tau_r | |
32 | |
33 H, Hi % Inner products | |
34 phi % Borrowing constant for (d1 - e^T*D1) from R | |
35 gamma % Borrowing constant for d1 from M | |
36 H11 % First element of H | |
37 e_l, e_r | |
38 d1_l, d1_r % Normal derivatives at the boundary | |
39 E % E{i}^T picks out component i | |
40 | |
41 H_boundary % Boundary inner products | |
42 | |
43 % Kroneckered norms and coefficients | |
44 RHOi_kron | |
45 Hi_kron | |
46 end | |
47 | |
48 methods | |
49 | |
50 function obj = Elastic2dVariable(g ,order, lambda_fun, mu_fun, rho_fun, opSet) | |
51 default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); | |
52 default_arg('lambda_fun', @(x,y) 0*x+1); | |
53 default_arg('mu_fun', @(x,y) 0*x+1); | |
54 default_arg('rho_fun', @(x,y) 0*x+1); | |
55 dim = 2; | |
56 | |
57 assert(isa(g, 'grid.Cartesian')) | |
58 | |
59 lambda = grid.evalOn(g, lambda_fun); | |
60 mu = grid.evalOn(g, mu_fun); | |
61 rho = grid.evalOn(g, rho_fun); | |
62 m = g.size(); | |
63 m_tot = g.N(); | |
64 | |
65 h = g.scaling(); | |
66 lim = g.lim; | |
67 if isempty(lim) | |
68 x = g.x; | |
69 lim = cell(length(x),1); | |
70 for i = 1:length(x) | |
71 lim{i} = {min(x{i}), max(x{i})}; | |
72 end | |
73 end | |
74 | |
75 % 1D operators | |
76 ops = cell(dim,1); | |
77 for i = 1:dim | |
78 ops{i} = opSet{i}(m(i), lim{i}, order); | |
79 end | |
80 | |
81 % Borrowing constants | |
82 for i = 1:dim | |
83 beta = ops{i}.borrowing.R.delta_D; | |
84 obj.H11{i} = ops{i}.borrowing.H11; | |
85 obj.phi{i} = beta/obj.H11{i}; | |
86 obj.gamma{i} = ops{i}.borrowing.M.d1; | |
87 end | |
88 | |
89 I = cell(dim,1); | |
90 D1 = cell(dim,1); | |
91 D2 = cell(dim,1); | |
92 H = cell(dim,1); | |
93 Hi = cell(dim,1); | |
94 e_l = cell(dim,1); | |
95 e_r = cell(dim,1); | |
96 d1_l = cell(dim,1); | |
97 d1_r = cell(dim,1); | |
98 | |
99 for i = 1:dim | |
100 I{i} = speye(m(i)); | |
101 D1{i} = ops{i}.D1; | |
102 D2{i} = ops{i}.D2; | |
103 H{i} = ops{i}.H; | |
104 Hi{i} = ops{i}.HI; | |
105 e_l{i} = ops{i}.e_l; | |
106 e_r{i} = ops{i}.e_r; | |
107 d1_l{i} = ops{i}.d1_l; | |
108 d1_r{i} = ops{i}.d1_r; | |
109 end | |
110 | |
111 %====== Assemble full operators ======== | |
112 LAMBDA = spdiag(lambda); | |
113 obj.LAMBDA = LAMBDA; | |
114 MU = spdiag(mu); | |
115 obj.MU = MU; | |
116 RHO = spdiag(rho); | |
117 obj.RHO = RHO; | |
118 obj.RHOi = inv(RHO); | |
119 | |
120 obj.D1 = cell(dim,1); | |
121 obj.D2_lambda = cell(dim,1); | |
122 obj.D2_mu = cell(dim,1); | |
123 obj.e_l = cell(dim,1); | |
124 obj.e_r = cell(dim,1); | |
125 obj.d1_l = cell(dim,1); | |
126 obj.d1_r = cell(dim,1); | |
127 | |
128 % D1 | |
129 obj.D1{1} = kron(D1{1},I{2}); | |
130 obj.D1{2} = kron(I{1},D1{2}); | |
131 | |
132 % Boundary operators | |
133 obj.e_l{1} = kron(e_l{1},I{2}); | |
134 obj.e_l{2} = kron(I{1},e_l{2}); | |
135 obj.e_r{1} = kron(e_r{1},I{2}); | |
136 obj.e_r{2} = kron(I{1},e_r{2}); | |
137 | |
138 obj.d1_l{1} = kron(d1_l{1},I{2}); | |
139 obj.d1_l{2} = kron(I{1},d1_l{2}); | |
140 obj.d1_r{1} = kron(d1_r{1},I{2}); | |
141 obj.d1_r{2} = kron(I{1},d1_r{2}); | |
142 | |
143 % D2 | |
144 for i = 1:dim | |
145 obj.D2_lambda{i} = sparse(m_tot); | |
146 obj.D2_mu{i} = sparse(m_tot); | |
147 end | |
148 ind = grid.funcToMatrix(g, 1:m_tot); | |
149 | |
150 for i = 1:m(2) | |
151 D_lambda = D2{1}(lambda(ind(:,i))); | |
152 D_mu = D2{1}(mu(ind(:,i))); | |
153 | |
154 p = ind(:,i); | |
155 obj.D2_lambda{1}(p,p) = D_lambda; | |
156 obj.D2_mu{1}(p,p) = D_mu; | |
157 end | |
158 | |
159 for i = 1:m(1) | |
160 D_lambda = D2{2}(lambda(ind(i,:))); | |
161 D_mu = D2{2}(mu(ind(i,:))); | |
162 | |
163 p = ind(i,:); | |
164 obj.D2_lambda{2}(p,p) = D_lambda; | |
165 obj.D2_mu{2}(p,p) = D_mu; | |
166 end | |
167 | |
168 % Quadratures | |
169 obj.H = kron(H{1},H{2}); | |
170 obj.Hi = inv(obj.H); | |
171 obj.H_boundary = cell(dim,1); | |
172 obj.H_boundary{1} = H{2}; | |
173 obj.H_boundary{2} = H{1}; | |
174 | |
175 % E{i}^T picks out component i. | |
176 E = cell(dim,1); | |
177 I = speye(m_tot,m_tot); | |
178 for i = 1:dim | |
179 e = sparse(dim,1); | |
180 e(i) = 1; | |
181 E{i} = kron(I,e); | |
182 end | |
183 obj.E = E; | |
184 | |
185 % Differentiation matrix D (without SAT) | |
186 D2_lambda = obj.D2_lambda; | |
187 D2_mu = obj.D2_mu; | |
188 D1 = obj.D1; | |
189 D = sparse(dim*m_tot,dim*m_tot); | |
190 d = @kroneckerDelta; % Kronecker delta | |
191 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta | |
192 for i = 1:dim | |
193 for j = 1:dim | |
194 D = D + E{i}*inv(RHO)*( d(i,j)*D2_lambda{i}*E{j}' +... | |
195 db(i,j)*D1{i}*LAMBDA*D1{j}*E{j}' ... | |
196 ); | |
197 D = D + E{i}*inv(RHO)*( d(i,j)*D2_mu{i}*E{j}' +... | |
198 db(i,j)*D1{j}*MU*D1{i}*E{j}' + ... | |
199 D2_mu{j}*E{i}' ... | |
200 ); | |
201 end | |
202 end | |
203 obj.D = D; | |
204 %=========================================% | |
205 | |
206 % Numerical traction operators for BC. | |
207 % Because d1 =/= e0^T*D1, the numerical tractions are different | |
208 % at every boundary. | |
209 T_l = cell(dim,1); | |
210 T_r = cell(dim,1); | |
211 tau_l = cell(dim,1); | |
212 tau_r = cell(dim,1); | |
213 % tau^{j}_i = sum_k T^{j}_{ik} u_k | |
214 | |
215 d1_l = obj.d1_l; | |
216 d1_r = obj.d1_r; | |
217 e_l = obj.e_l; | |
218 e_r = obj.e_r; | |
219 D1 = obj.D1; | |
220 | |
221 % Loop over boundaries | |
222 for j = 1:dim | |
223 T_l{j} = cell(dim,dim); | |
224 T_r{j} = cell(dim,dim); | |
225 tau_l{j} = cell(dim,1); | |
226 tau_r{j} = cell(dim,1); | |
227 | |
228 % Loop over components | |
229 for i = 1:dim | |
230 tau_l{j}{i} = sparse(m_tot,dim*m_tot); | |
231 tau_r{j}{i} = sparse(m_tot,dim*m_tot); | |
232 for k = 1:dim | |
233 T_l{j}{i,k} = ... | |
234 -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})... | |
235 -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})... | |
236 -d(i,k)*MU*e_l{j}*d1_l{j}'; | |
237 | |
238 T_r{j}{i,k} = ... | |
239 d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})... | |
240 +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})... | |
241 +d(i,k)*MU*e_r{j}*d1_r{j}'; | |
242 | |
243 tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; | |
244 tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}'; | |
245 end | |
246 | |
247 end | |
248 end | |
249 obj.T_l = T_l; | |
250 obj.T_r = T_r; | |
251 obj.tau_l = tau_l; | |
252 obj.tau_r = tau_r; | |
253 | |
254 % Kroneckered norms and coefficients | |
255 I_dim = speye(dim); | |
256 obj.RHOi_kron = kron(obj.RHOi, I_dim); | |
257 obj.Hi_kron = kron(obj.Hi, I_dim); | |
258 | |
259 % Misc. | |
260 obj.m = m; | |
261 obj.h = h; | |
262 obj.order = order; | |
263 obj.grid = g; | |
264 obj.dim = dim; | |
265 | |
266 end | |
267 | |
268 | |
269 % Closure functions return the operators applied to the own domain to close the boundary | |
270 % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
271 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
272 % bc is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition | |
273 % on the first component. | |
274 % data is a function returning the data that should be applied at the boundary. | |
275 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
276 % neighbour_boundary is a string specifying which boundary to interface to. | |
277 function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning) | |
278 default_arg('tuning', 1.2); | |
279 | |
280 assert( iscell(bc), 'The BC type must be a 2x1 cell array' ); | |
281 comp = bc{1}; | |
282 type = bc{2}; | |
283 | |
284 % j is the coordinate direction of the boundary | |
285 j = obj.get_boundary_number(boundary); | |
286 [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary); | |
287 | |
288 E = obj.E; | |
289 Hi = obj.Hi; | |
290 LAMBDA = obj.LAMBDA; | |
291 MU = obj.MU; | |
292 RHOi = obj.RHOi; | |
293 | |
294 dim = obj.dim; | |
295 m_tot = obj.grid.N(); | |
296 | |
297 % Preallocate | |
298 closure = sparse(dim*m_tot, dim*m_tot); | |
299 penalty = sparse(dim*m_tot, m_tot/obj.m(j)); | |
300 | |
301 k = comp; | |
302 switch type | |
303 | |
304 % Dirichlet boundary condition | |
305 case {'D','d','dirichlet','Dirichlet'} | |
306 | |
307 phi = obj.phi{j}; | |
308 h = obj.h(j); | |
309 h11 = obj.H11{j}*h; | |
310 gamma = obj.gamma{j}; | |
311 | |
312 a_lambda = dim/h11 + 1/(h11*phi); | |
313 a_mu_i = 2/(gamma*h); | |
314 a_mu_ij = 2/h11 + 1/(h11*phi); | |
315 | |
316 d = @kroneckerDelta; % Kronecker delta | |
317 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta | |
318 alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... | |
319 + d(i,j)* a_mu_i*MU ... | |
320 + db(i,j)*a_mu_ij*MU ); | |
321 | |
322 % Loop over components that Dirichlet penalties end up on | |
323 for i = 1:dim | |
324 C = T{k,i}; | |
325 A = -d(i,k)*alpha(i,j); | |
326 B = A + C; | |
327 closure = closure + E{i}*RHOi*Hi*B'*e*H_gamma*(e'*E{k}' ); | |
328 penalty = penalty - E{i}*RHOi*Hi*B'*e*H_gamma; | |
329 end | |
330 | |
331 % Free boundary condition | |
332 case {'F','f','Free','free','traction','Traction','t','T'} | |
333 closure = closure - E{k}*RHOi*Hi*e*H_gamma* (e'*tau{k} ); | |
334 penalty = penalty + E{k}*RHOi*Hi*e*H_gamma; | |
335 | |
336 % Unknown boundary condition | |
337 otherwise | |
338 error('No such boundary condition: type = %s',type); | |
339 end | |
340 end | |
341 | |
342 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | |
343 % u denotes the solution in the own domain | |
344 % v denotes the solution in the neighbour domain | |
345 % Operators without subscripts are from the own domain. | |
346 tuning = 1.2; | |
347 | |
348 % j is the coordinate direction of the boundary | |
349 j = obj.get_boundary_number(boundary); | |
350 j_v = neighbour_scheme.get_boundary_number(neighbour_boundary); | |
351 | |
352 % Get boundary operators | |
353 [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary); | |
354 [e_v, tau_v] = neighbour_scheme.get_boundary_operator({'e','tau'}, neighbour_boundary); | |
355 | |
356 % Operators and quantities that correspond to the own domain only | |
357 Hi = obj.Hi; | |
358 RHOi = obj.RHOi; | |
359 dim = obj.dim; | |
360 | |
361 %--- Other operators ---- | |
362 m_tot_u = obj.grid.N(); | |
363 E = obj.E; | |
364 LAMBDA_u = obj.LAMBDA; | |
365 MU_u = obj.MU; | |
366 lambda_u = e'*LAMBDA_u*e; | |
367 mu_u = e'*MU_u*e; | |
368 | |
369 m_tot_v = neighbour_scheme.grid.N(); | |
370 E_v = neighbour_scheme.E; | |
371 LAMBDA_v = neighbour_scheme.LAMBDA; | |
372 MU_v = neighbour_scheme.MU; | |
373 lambda_v = e_v'*LAMBDA_v*e_v; | |
374 mu_v = e_v'*MU_v*e_v; | |
375 %------------------------- | |
376 | |
377 % Borrowing constants | |
378 phi_u = obj.phi{j}; | |
379 h_u = obj.h(j); | |
380 h11_u = obj.H11{j}*h_u; | |
381 gamma_u = obj.gamma{j}; | |
382 | |
383 phi_v = neighbour_scheme.phi{j_v}; | |
384 h_v = neighbour_scheme.h(j_v); | |
385 h11_v = neighbour_scheme.H11{j_v}*h_v; | |
386 gamma_v = neighbour_scheme.gamma{j_v}; | |
387 | |
388 % E > sum_i 1/(2*alpha_ij)*(tau_i)^2 | |
389 function [alpha_ii, alpha_ij] = computeAlpha(phi,h,h11,gamma,lambda,mu) | |
390 th1 = h11/(2*dim); | |
391 th2 = h11*phi/2; | |
392 th3 = h*gamma; | |
393 a1 = ( (th1 + th2)*th3*lambda + 4*th1*th2*mu ) / (2*th1*th2*th3); | |
394 a2 = ( 16*(th1 + th2)*lambda*mu ) / (th1*th2*th3); | |
395 alpha_ii = a1 + sqrt(a2 + a1^2); | |
396 | |
397 alpha_ij = mu*(2/h11 + 1/(phi*h11)); | |
398 end | |
399 | |
400 [alpha_ii_u, alpha_ij_u] = computeAlpha(phi_u,h_u,h11_u,gamma_u,lambda_u,mu_u); | |
401 [alpha_ii_v, alpha_ij_v] = computeAlpha(phi_v,h_v,h11_v,gamma_v,lambda_v,mu_v); | |
402 sigma_ii = tuning*(alpha_ii_u + alpha_ii_v)/4; | |
403 sigma_ij = tuning*(alpha_ij_u + alpha_ij_v)/4; | |
404 | |
405 d = @kroneckerDelta; % Kronecker delta | |
406 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta | |
407 sigma = @(i,j) tuning*(d(i,j)*sigma_ii + db(i,j)*sigma_ij); | |
408 | |
409 % Preallocate | |
410 closure = sparse(dim*m_tot_u, dim*m_tot_u); | |
411 penalty = sparse(dim*m_tot_u, dim*m_tot_v); | |
412 | |
413 % Loop over components that penalties end up on | |
414 for i = 1:dim | |
415 closure = closure - E{i}*RHOi*Hi*e*sigma(i,j)*H_gamma*e'*E{i}'; | |
416 penalty = penalty + E{i}*RHOi*Hi*e*sigma(i,j)*H_gamma*e_v'*E_v{i}'; | |
417 | |
418 closure = closure - 1/2*E{i}*RHOi*Hi*e*H_gamma*e'*tau{i}; | |
419 penalty = penalty - 1/2*E{i}*RHOi*Hi*e*H_gamma*e_v'*tau_v{i}; | |
420 | |
421 % Loop over components that we have interface conditions on | |
422 for k = 1:dim | |
423 closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e'*E{k}'; | |
424 penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e_v'*E_v{k}'; | |
425 end | |
426 end | |
427 end | |
428 | |
429 % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. | |
430 function [j, nj] = get_boundary_number(obj, boundary) | |
431 | |
432 switch boundary | |
433 case {'w','W','west','West', 'e', 'E', 'east', 'East'} | |
434 j = 1; | |
435 case {'s','S','south','South', 'n', 'N', 'north', 'North'} | |
436 j = 2; | |
437 otherwise | |
438 error('No such boundary: boundary = %s',boundary); | |
439 end | |
440 | |
441 switch boundary | |
442 case {'w','W','west','West','s','S','south','South'} | |
443 nj = -1; | |
444 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
445 nj = 1; | |
446 end | |
447 end | |
448 | |
449 % Returns the boundary operator op for the boundary specified by the string boundary. | |
450 % op: may be a cell array of strings | |
451 function [varargout] = get_boundary_operator(obj, op, boundary) | |
452 | |
453 switch boundary | |
454 case {'w','W','west','West', 'e', 'E', 'east', 'East'} | |
455 j = 1; | |
456 case {'s','S','south','South', 'n', 'N', 'north', 'North'} | |
457 j = 2; | |
458 otherwise | |
459 error('No such boundary: boundary = %s',boundary); | |
460 end | |
461 | |
462 if ~iscell(op) | |
463 op = {op}; | |
464 end | |
465 | |
466 for i = 1:length(op) | |
467 switch op{i} | |
468 case 'e' | |
469 switch boundary | |
470 case {'w','W','west','West','s','S','south','South'} | |
471 varargout{i} = obj.e_l{j}; | |
472 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
473 varargout{i} = obj.e_r{j}; | |
474 end | |
475 case 'd' | |
476 switch boundary | |
477 case {'w','W','west','West','s','S','south','South'} | |
478 varargout{i} = obj.d1_l{j}; | |
479 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
480 varargout{i} = obj.d1_r{j}; | |
481 end | |
482 case 'H' | |
483 varargout{i} = obj.H_boundary{j}; | |
484 case 'T' | |
485 switch boundary | |
486 case {'w','W','west','West','s','S','south','South'} | |
487 varargout{i} = obj.T_l{j}; | |
488 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
489 varargout{i} = obj.T_r{j}; | |
490 end | |
491 case 'tau' | |
492 switch boundary | |
493 case {'w','W','west','West','s','S','south','South'} | |
494 varargout{i} = obj.tau_l{j}; | |
495 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | |
496 varargout{i} = obj.tau_r{j}; | |
497 end | |
498 otherwise | |
499 error(['No such operator: operator = ' op{i}]); | |
500 end | |
501 end | |
502 | |
503 end | |
504 | |
505 function N = size(obj) | |
506 N = obj.dim*prod(obj.m); | |
507 end | |
508 end | |
509 end |