Mercurial > repos > public > sbplib
comparison +scheme/Elastic2dVariable.m @ 855:5751262b323b feature/poroelastic
Add 1D quadrature matrices as property in Elastic2dVariable.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Sun, 16 Sep 2018 18:00:14 -0700 |
parents | 1f6b2fb69225 |
children | 607c631f175e |
comparison
equal
deleted
inserted
replaced
838:bd43256f0c41 | 855:5751262b323b |
---|---|
1 classdef Elastic2dVariable < scheme.Scheme | 1 classdef Elastic2dVariable < scheme.Scheme |
2 | 2 |
3 % Discretizes the elastic wave equation: | 3 % Discretizes the elastic wave equation: |
4 % rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i | 4 % rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i |
5 % opSet should be cell array of opSets, one per dimension. This | 5 % opSet should be cell array of opSets, one per dimension. This |
6 % is useful if we have periodic BC in one direction. | 6 % is useful if we have periodic BC in one direction. |
7 | 7 |
8 properties | 8 properties |
9 m % Number of points in each direction, possibly a vector | 9 m % Number of points in each direction, possibly a vector |
28 | 28 |
29 % Traction operators used for BC | 29 % Traction operators used for BC |
30 T_l, T_r | 30 T_l, T_r |
31 tau_l, tau_r | 31 tau_l, tau_r |
32 | 32 |
33 H, Hi % Inner products | 33 H, Hi, H_1D % Inner products |
34 phi % Borrowing constant for (d1 - e^T*D1) from R | 34 phi % Borrowing constant for (d1 - e^T*D1) from R |
35 gamma % Borrowing constant for d1 from M | 35 gamma % Borrowing constant for d1 from M |
36 H11 % First element of H | 36 H11 % First element of H |
37 e_l, e_r | 37 e_l, e_r |
38 d1_l, d1_r % Normal derivatives at the boundary | 38 d1_l, d1_r % Normal derivatives at the boundary |
39 E % E{i}^T picks out component i | 39 E % E{i}^T picks out component i |
40 | 40 |
41 H_boundary % Boundary inner products | 41 H_boundary % Boundary inner products |
42 | 42 |
43 % Kroneckered norms and coefficients | 43 % Kroneckered norms and coefficients |
44 RHOi_kron | 44 RHOi_kron |
45 Hi_kron | 45 Hi_kron |
169 obj.H = kron(H{1},H{2}); | 169 obj.H = kron(H{1},H{2}); |
170 obj.Hi = inv(obj.H); | 170 obj.Hi = inv(obj.H); |
171 obj.H_boundary = cell(dim,1); | 171 obj.H_boundary = cell(dim,1); |
172 obj.H_boundary{1} = H{2}; | 172 obj.H_boundary{1} = H{2}; |
173 obj.H_boundary{2} = H{1}; | 173 obj.H_boundary{2} = H{1}; |
174 obj.H_1D = {H{1}, H{2}}; | |
174 | 175 |
175 % E{i}^T picks out component i. | 176 % E{i}^T picks out component i. |
176 E = cell(dim,1); | 177 E = cell(dim,1); |
177 I = speye(m_tot,m_tot); | 178 I = speye(m_tot,m_tot); |
178 for i = 1:dim | 179 for i = 1:dim |
228 % Loop over components | 229 % Loop over components |
229 for i = 1:dim | 230 for i = 1:dim |
230 tau_l{j}{i} = sparse(m_tot,dim*m_tot); | 231 tau_l{j}{i} = sparse(m_tot,dim*m_tot); |
231 tau_r{j}{i} = sparse(m_tot,dim*m_tot); | 232 tau_r{j}{i} = sparse(m_tot,dim*m_tot); |
232 for k = 1:dim | 233 for k = 1:dim |
233 T_l{j}{i,k} = ... | 234 T_l{j}{i,k} = ... |
234 -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})... | 235 -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})... |
235 -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})... | 236 -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})... |
236 -d(i,k)*MU*e_l{j}*d1_l{j}'; | 237 -d(i,k)*MU*e_l{j}*d1_l{j}'; |
237 | 238 |
238 T_r{j}{i,k} = ... | 239 T_r{j}{i,k} = ... |
239 d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})... | 240 d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})... |
240 +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})... | 241 +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})... |
241 +d(i,k)*MU*e_r{j}*d1_r{j}'; | 242 +d(i,k)*MU*e_r{j}*d1_r{j}'; |
242 | 243 |
243 tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; | 244 tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; |
244 tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}'; | 245 tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}'; |
245 end | 246 end |
268 | 269 |
269 % Closure functions return the operators applied to the own domain to close the boundary | 270 % Closure functions return the operators applied to the own domain to close the boundary |
270 % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. | 271 % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. |
271 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | 272 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. |
272 % bc is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition | 273 % bc is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition |
273 % on the first component. | 274 % on the first component. |
274 % data is a function returning the data that should be applied at the boundary. | 275 % data is a function returning the data that should be applied at the boundary. |
275 % neighbour_scheme is an instance of Scheme that should be interfaced to. | 276 % neighbour_scheme is an instance of Scheme that should be interfaced to. |
276 % neighbour_boundary is a string specifying which boundary to interface to. | 277 % neighbour_boundary is a string specifying which boundary to interface to. |
277 function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning) | 278 function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning) |
278 default_arg('tuning', 1.2); | 279 default_arg('tuning', 1.2); |
315 | 316 |
316 d = @kroneckerDelta; % Kronecker delta | 317 d = @kroneckerDelta; % Kronecker delta |
317 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta | 318 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta |
318 alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... | 319 alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... |
319 + d(i,j)* a_mu_i*MU ... | 320 + d(i,j)* a_mu_i*MU ... |
320 + db(i,j)*a_mu_ij*MU ); | 321 + db(i,j)*a_mu_ij*MU ); |
321 | 322 |
322 % Loop over components that Dirichlet penalties end up on | 323 % Loop over components that Dirichlet penalties end up on |
323 for i = 1:dim | 324 for i = 1:dim |
324 C = T{k,i}; | 325 C = T{k,i}; |
325 A = -d(i,k)*alpha(i,j); | 326 A = -d(i,k)*alpha(i,j); |
326 B = A + C; | 327 B = A + C; |
327 closure = closure + E{i}*RHOi*Hi*B'*e*H_gamma*(e'*E{k}' ); | 328 closure = closure + E{i}*RHOi*Hi*B'*e*H_gamma*(e'*E{k}' ); |
328 penalty = penalty - E{i}*RHOi*Hi*B'*e*H_gamma; | 329 penalty = penalty - E{i}*RHOi*Hi*B'*e*H_gamma; |
329 end | 330 end |
330 | 331 |
331 % Free boundary condition | 332 % Free boundary condition |
332 case {'F','f','Free','free','traction','Traction','t','T'} | 333 case {'F','f','Free','free','traction','Traction','t','T'} |
333 closure = closure - E{k}*RHOi*Hi*e*H_gamma* (e'*tau{k} ); | 334 closure = closure - E{k}*RHOi*Hi*e*H_gamma* (e'*tau{k} ); |
334 penalty = penalty + E{k}*RHOi*Hi*e*H_gamma; | 335 penalty = penalty + E{k}*RHOi*Hi*e*H_gamma; |
335 | 336 |
336 % Unknown boundary condition | 337 % Unknown boundary condition |
337 otherwise | 338 otherwise |
338 error('No such boundary condition: type = %s',type); | 339 error('No such boundary condition: type = %s',type); |
355 | 356 |
356 % Operators and quantities that correspond to the own domain only | 357 % Operators and quantities that correspond to the own domain only |
357 Hi = obj.Hi; | 358 Hi = obj.Hi; |
358 RHOi = obj.RHOi; | 359 RHOi = obj.RHOi; |
359 dim = obj.dim; | 360 dim = obj.dim; |
360 | 361 |
361 %--- Other operators ---- | 362 %--- Other operators ---- |
362 m_tot_u = obj.grid.N(); | 363 m_tot_u = obj.grid.N(); |
363 E = obj.E; | 364 E = obj.E; |
364 LAMBDA_u = obj.LAMBDA; | 365 LAMBDA_u = obj.LAMBDA; |
365 MU_u = obj.MU; | 366 MU_u = obj.MU; |
371 LAMBDA_v = neighbour_scheme.LAMBDA; | 372 LAMBDA_v = neighbour_scheme.LAMBDA; |
372 MU_v = neighbour_scheme.MU; | 373 MU_v = neighbour_scheme.MU; |
373 lambda_v = e_v'*LAMBDA_v*e_v; | 374 lambda_v = e_v'*LAMBDA_v*e_v; |
374 mu_v = e_v'*MU_v*e_v; | 375 mu_v = e_v'*MU_v*e_v; |
375 %------------------------- | 376 %------------------------- |
376 | 377 |
377 % Borrowing constants | 378 % Borrowing constants |
378 phi_u = obj.phi{j}; | 379 phi_u = obj.phi{j}; |
379 h_u = obj.h(j); | 380 h_u = obj.h(j); |
380 h11_u = obj.H11{j}*h_u; | 381 h11_u = obj.H11{j}*h_u; |
381 gamma_u = obj.gamma{j}; | 382 gamma_u = obj.gamma{j}; |
384 h_v = neighbour_scheme.h(j_v); | 385 h_v = neighbour_scheme.h(j_v); |
385 h11_v = neighbour_scheme.H11{j_v}*h_v; | 386 h11_v = neighbour_scheme.H11{j_v}*h_v; |
386 gamma_v = neighbour_scheme.gamma{j_v}; | 387 gamma_v = neighbour_scheme.gamma{j_v}; |
387 | 388 |
388 % E > sum_i 1/(2*alpha_ij)*(tau_i)^2 | 389 % E > sum_i 1/(2*alpha_ij)*(tau_i)^2 |
389 function [alpha_ii, alpha_ij] = computeAlpha(phi,h,h11,gamma,lambda,mu) | 390 function [alpha_ii, alpha_ij] = computeAlpha(phi,h,h11,gamma,lambda,mu) |
390 th1 = h11/(2*dim); | 391 th1 = h11/(2*dim); |
391 th2 = h11*phi/2; | 392 th2 = h11*phi/2; |
392 th3 = h*gamma; | 393 th3 = h*gamma; |
393 a1 = ( (th1 + th2)*th3*lambda + 4*th1*th2*mu ) / (2*th1*th2*th3); | 394 a1 = ( (th1 + th2)*th3*lambda + 4*th1*th2*mu ) / (2*th1*th2*th3); |
394 a2 = ( 16*(th1 + th2)*lambda*mu ) / (th1*th2*th3); | 395 a2 = ( 16*(th1 + th2)*lambda*mu ) / (th1*th2*th3); |
396 | 397 |
397 alpha_ij = mu*(2/h11 + 1/(phi*h11)); | 398 alpha_ij = mu*(2/h11 + 1/(phi*h11)); |
398 end | 399 end |
399 | 400 |
400 [alpha_ii_u, alpha_ij_u] = computeAlpha(phi_u,h_u,h11_u,gamma_u,lambda_u,mu_u); | 401 [alpha_ii_u, alpha_ij_u] = computeAlpha(phi_u,h_u,h11_u,gamma_u,lambda_u,mu_u); |
401 [alpha_ii_v, alpha_ij_v] = computeAlpha(phi_v,h_v,h11_v,gamma_v,lambda_v,mu_v); | 402 [alpha_ii_v, alpha_ij_v] = computeAlpha(phi_v,h_v,h11_v,gamma_v,lambda_v,mu_v); |
402 sigma_ii = tuning*(alpha_ii_u + alpha_ii_v)/4; | 403 sigma_ii = tuning*(alpha_ii_u + alpha_ii_v)/4; |
403 sigma_ij = tuning*(alpha_ij_u + alpha_ij_v)/4; | 404 sigma_ij = tuning*(alpha_ij_u + alpha_ij_v)/4; |
404 | 405 |
405 d = @kroneckerDelta; % Kronecker delta | 406 d = @kroneckerDelta; % Kronecker delta |
406 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta | 407 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta |
418 closure = closure - 1/2*E{i}*RHOi*Hi*e*H_gamma*e'*tau{i}; | 419 closure = closure - 1/2*E{i}*RHOi*Hi*e*H_gamma*e'*tau{i}; |
419 penalty = penalty - 1/2*E{i}*RHOi*Hi*e*H_gamma*e_v'*tau_v{i}; | 420 penalty = penalty - 1/2*E{i}*RHOi*Hi*e*H_gamma*e_v'*tau_v{i}; |
420 | 421 |
421 % Loop over components that we have interface conditions on | 422 % Loop over components that we have interface conditions on |
422 for k = 1:dim | 423 for k = 1:dim |
423 closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e'*E{k}'; | 424 closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e'*E{k}'; |
424 penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e_v'*E_v{k}'; | 425 penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e_v'*E_v{k}'; |
425 end | 426 end |
426 end | 427 end |
427 end | 428 end |
428 | 429 |
429 % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. | 430 % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. |
430 function [j, nj] = get_boundary_number(obj, boundary) | 431 function [j, nj] = get_boundary_number(obj, boundary) |
492 switch boundary | 493 switch boundary |
493 case {'w','W','west','West','s','S','south','South'} | 494 case {'w','W','west','West','s','S','south','South'} |
494 varargout{i} = obj.tau_l{j}; | 495 varargout{i} = obj.tau_l{j}; |
495 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} | 496 case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} |
496 varargout{i} = obj.tau_r{j}; | 497 varargout{i} = obj.tau_r{j}; |
497 end | 498 end |
498 otherwise | 499 otherwise |
499 error(['No such operator: operator = ' op{i}]); | 500 error(['No such operator: operator = ' op{i}]); |
500 end | 501 end |
501 end | 502 end |
502 | 503 |