Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_variable_2.m @ 313:52b4cdf27633 feature/beams
Cleaning order 2.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 23 Sep 2016 21:58:52 +0200 |
parents | 9230c056a574 |
children | 88584b0cfba1 |
comparison
equal
deleted
inserted
replaced
312:9230c056a574 | 313:52b4cdf27633 |
---|---|
8 %%% %%% | 8 %%% %%% |
9 %%% Datum: 2013-11-11 %%% | 9 %%% Datum: 2013-11-11 %%% |
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
11 | 11 |
12 BP = 4; | 12 BP = 4; |
13 if(m<2*BP) | 13 if(m < 2*BP) |
14 error(['Operator requires at least ' num2str(2*BP) ' grid points']); | 14 error('Operator requires at least %d grid points', 2*BP); |
15 end | 15 end |
16 | 16 |
17 % Norm | |
18 Hv = ones(m,1); | |
19 Hv(1) = 1/2; | |
20 Hv(m) = 1/2; | |
21 Hv = h*Hv; | |
22 H = spdiag(Hv, 0); | |
23 HI = spdiag(1./Hv, 0); | |
17 | 24 |
18 H=speye(m,m); | 25 % Boundary operators |
19 H(1,1)=1/2; | 26 e_l = sparse(m,1); |
20 H(m,m)=1/2; | 27 e_l(1) = 1; |
28 e_r = rot90(e_l, 2); | |
21 | 29 |
22 H=H*h; | 30 d1_l = sparse(m,1); |
23 HI=inv(H); | 31 d1_l(1:3) = 1/h*[-3/2 2 -1/2]; |
32 d1_r = -rot90(d1_l); | |
33 | |
34 d2_l = sparse(m,1); | |
35 d2_l(1:3) = 1/h^2*[1 -2 1]; | |
36 d2_r = rot90(d2_l, 2); | |
37 | |
38 d3_l = sparse(m,1); | |
39 d3_l(1:4) = 1/h^3*[-1 3 -3 1]; | |
40 d3_r = -rot90(d3_l, 2) | |
24 | 41 |
25 | 42 |
26 % First derivative SBP operator, 1st order accurate at first 6 boundary points | 43 % First derivative SBP operator, 1st order accurate at first 6 boundary points |
27 | 44 stencil = [-1/2, 0, 1/2]; |
28 q1=1/2; | 45 diags = [-1 0 1]; |
29 % Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
30 stencil = [-q1,0,q1]; | |
31 d = (length(stencil)-1)/2; | |
32 diags = -d:d; | |
33 Q = stripeMatrix(stencil, diags, m); | 46 Q = stripeMatrix(stencil, diags, m); |
34 | 47 |
35 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); | 48 D1 = HI*(Q-1/2*(e_1*e_1') + 1/2*(e_m*e_m')); |
36 | |
37 e_1=sparse(m,1); | |
38 e_1(1)=1; | |
39 e_m=sparse(m,1); | |
40 e_m(m)=1; | |
41 | |
42 D1=HI*(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; | |
43 | |
44 | 49 |
45 % Second derivative, 1st order accurate at first boundary points | 50 % Second derivative, 1st order accurate at first boundary points |
46 | 51 M = sparse(m,m); |
47 % below for constant coefficients | |
48 % m1=-1;m0=2; | |
49 % M=m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);M(1,1)=1;M(m,m)=1; | |
50 % M=M/h; | |
51 %D2=HI*(-M-e_1*S_1+e_m*S_m); | |
52 | |
53 % Below for variable coefficients | |
54 % Require a vector c with the koeffients | |
55 | |
56 S_U=[-3/2 2 -1/2]/h; | |
57 S_1=sparse(1,m); | |
58 S_1(1:3)=S_U; | |
59 S_m=sparse(1,m); | |
60 S_m(m-2:m)=fliplr(-S_U); | |
61 | |
62 S_1 = S_1'; | |
63 S_m = S_m'; | |
64 | |
65 M=sparse(m,m); | |
66 e_1 = sparse(e_1); | |
67 e_m = sparse(e_m); | |
68 S_1 = sparse(S_1); | |
69 S_m = sparse(S_m); | |
70 | 52 |
71 scheme_width = 3; | 53 scheme_width = 3; |
72 scheme_radius = (scheme_width-1)/2; | 54 scheme_radius = (scheme_width-1)/2; |
73 r = (1+scheme_radius):(m-scheme_radius); | 55 r = (1+scheme_radius):(m-scheme_radius); |
74 | 56 |
75 function D2 = D2_fun(c) | 57 function D2 = D2_fun(c) |
76 | |
77 Mm1 = -c(r-1)/2 - c(r)/2; | 58 Mm1 = -c(r-1)/2 - c(r)/2; |
78 M0 = c(r-1)/2 + c(r) + c(r+1)/2; | 59 M0 = c(r-1)/2 + c(r) + c(r+1)/2; |
79 Mp1 = -c(r)/2 - c(r+1)/2; | 60 Mp1 = -c(r)/2 - c(r+1)/2; |
80 | 61 |
81 M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m); | 62 M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m); |
82 | 63 |
64 M(1:2,1:2) = [c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;]; | |
65 M(m-1:m,m-1:m) = [c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;]; | |
66 M = 1/h*M; | |
83 | 67 |
84 M(1:2,1:2)=[c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;]; | 68 D2 = HI*(-M - c(1)*e_1*d1_l' + c(m)*e_r*d1_r'); |
85 M(m-1:m,m-1:m)=[c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;]; | |
86 M=M/h; | |
87 | |
88 D2=HI*(-M-c(1)*e_1*S_1'+c(m)*e_m*S_m'); | |
89 end | 69 end |
90 D2 = @D2_fun; | 70 D2 = @D2_fun; |
91 | 71 |
92 | 72 % Fourth derivative, 0th order accurate at first 6 boundary points |
93 | 73 stencil = [1, -4, 6, -4, 1]; |
94 | 74 diags = -2:2; |
95 | |
96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
97 | |
98 | |
99 | |
100 % Third derivative, 1st order accurate at first 6 boundary points | |
101 | |
102 q2=1/2;q1=-1; | |
103 % Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
104 stencil = [-q2,-q1,0,q1,q2]; | |
105 d = (length(stencil)-1)/2; | |
106 diags = -d:d; | |
107 Q3 = stripeMatrix(stencil, diags, m); | |
108 | |
109 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); | |
110 | |
111 | |
112 Q3_U = [ | |
113 0 -0.13e2/0.16e2 0.7e1/0.8e1 -0.1e1/0.16e2; | |
114 0.13e2/0.16e2 0 -0.23e2/0.16e2 0.5e1/0.8e1; | |
115 -0.7e1/0.8e1 0.23e2/0.16e2 0 -0.17e2/0.16e2; | |
116 0.1e1/0.16e2 -0.5e1/0.8e1 0.17e2/0.16e2 0; | |
117 ]; | |
118 Q3(1:4,1:4)=Q3_U; | |
119 Q3(m-3:m,m-3:m)=rot90( -Q3_U ,2 ); | |
120 Q3=Q3/h^2; | |
121 | |
122 | |
123 | |
124 S2_U=[1 -2 1;]/h^2; | |
125 S2_1=sparse(1,m); | |
126 S2_1(1:3)=S2_U; | |
127 S2_m=sparse(1,m); | |
128 S2_m(m-2:m)=fliplr(S2_U); | |
129 S2_1 = S2_1'; | |
130 S2_m = S2_m'; | |
131 | |
132 | |
133 | |
134 D3=HI*(Q3 - e_1*S2_1' + e_m*S2_m' +1/2*(S_1*S_1') -1/2*(S_m*S_m') ) ; | |
135 | |
136 % Fourth derivative, 0th order accurate at first 6 boundary points (still | |
137 % yield 4th order convergence if stable: for example u_tt=-u_xxxx | |
138 | |
139 m2=1;m1=-4;m0=6; | |
140 % M4=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); | |
141 stencil = [m2,m1,m0,m1,m2]; | |
142 d = (length(stencil)-1)/2; | |
143 diags = -d:d; | |
144 M4 = stripeMatrix(stencil, diags, m); | 75 M4 = stripeMatrix(stencil, diags, m); |
145 | 76 |
146 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); | 77 M4_U = [ |
147 | 78 0.13e2/0.10e2 -0.12e2/0.5e1 0.9e1/0.10e2 0.1e1/0.5e1; |
148 M4_U=[ | 79 -0.12e2/0.5e1 0.26e2/0.5e1 -0.16e2/0.5e1 0.2e1/0.5e1; |
149 0.13e2/0.10e2 -0.12e2/0.5e1 0.9e1/0.10e2 0.1e1/0.5e1; | 80 0.9e1/0.10e2 -0.16e2/0.5e1 0.47e2/0.10e2 -0.17e2/0.5e1; |
150 -0.12e2/0.5e1 0.26e2/0.5e1 -0.16e2/0.5e1 0.2e1/0.5e1; | 81 0.1e1/0.5e1 0.2e1/0.5e1 -0.17e2/0.5e1 0.29e2/0.5e1; |
151 0.9e1/0.10e2 -0.16e2/0.5e1 0.47e2/0.10e2 -0.17e2/0.5e1; | |
152 0.1e1/0.5e1 0.2e1/0.5e1 -0.17e2/0.5e1 0.29e2/0.5e1; | |
153 ]; | 82 ]; |
154 | 83 |
155 M4(1:4,1:4)=M4_U; | 84 M4(1:4,1:4) = M4_U; |
156 | 85 M4(m-3:m,m-3:m) = rot90(M4_U, 2); |
157 M4(m-3:m,m-3:m)=rot90( M4_U ,2 ); | 86 M4 = 1/h^3*M4; |
158 M4=M4/h^3; | |
159 | |
160 S3_U=[-1 3 -3 1;]/h^3; | |
161 S3_1=sparse(1,m); | |
162 S3_1(1:4)=S3_U; | |
163 S3_m=sparse(1,m); | |
164 S3_m(m-3:m)=fliplr(-S3_U); | |
165 S3_1 = S3_1'; | |
166 S3_m = S3_m'; | |
167 | 87 |
168 D4=HI*(M4-e_1*S3_1'+e_m*S3_m' + S_1*S2_1'-S_m*S2_m'); | 88 D4=HI*(M4-e_1*S3_1'+e_m*S3_m' + S_1*S2_1'-S_m*S2_m'); |
169 end | 89 end |