Mercurial > repos > public > sbplib
comparison +scheme/Schrodinger1dCurve.m @ 508:508b7493be94 feature/quantumTriangles
moved all multiplications and divisions bu J and Ji to the siscretization to easier find the error
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Fri, 02 Jun 2017 11:33:04 +0200 |
parents | 1341e8580d64 |
children | 57f3493f851b |
comparison
equal
deleted
inserted
replaced
507:1341e8580d64 | 508:508b7493be94 |
---|---|
15 ddt_x_r | 15 ddt_x_r |
16 ddt_x_l | 16 ddt_x_l |
17 a | 17 a |
18 a_xi | 18 a_xi |
19 Ji | 19 Ji |
20 J | |
20 t_up | 21 t_up |
21 x | 22 x |
22 | 23 |
23 V_mat | 24 V_mat |
24 D1 | 25 D1 |
83 % neighbour_scheme is an instance of Scheme that should be interfaced to. | 84 % neighbour_scheme is an instance of Scheme that should be interfaced to. |
84 % neighbour_boundary is a string specifying which boundary to interface to. | 85 % neighbour_boundary is a string specifying which boundary to interface to. |
85 | 86 |
86 function [D] = d_fun(obj,t) | 87 function [D] = d_fun(obj,t) |
87 obj.variable_update(t); % In driscretization? | 88 obj.variable_update(t); % In driscretization? |
88 D= obj.Ji*(-0.5*(obj.D1*obj.a - obj.a_xi + obj.a*obj.D1) + 1i*obj.D2(diag(obj.Ji)) + 1i*obj.V_mat); | 89 D = (-0.5*(obj.D1*obj.a + obj.a*obj.D1) + 1i*obj.D2(diag(obj.Ji)) + 1i*obj.V_mat); |
89 | 90 % D = (-0.5*(obj.D1*obj.a -obj.a_xi+ obj.a*obj.D1) + 1i*obj.D2(diag(obj.Ji)) + 1i*obj.V_mat); |
91 % D= obj.Ji*(-sqrt(obj.a)*obj.D1*sqrt(obj.a) + 0.5*obj.a_xi + 1i*obj.D2(diag(obj.Ji)) + 1i*obj.V_mat); | |
90 end | 92 end |
91 | 93 |
92 | 94 |
93 function [] = variable_update(obj,t) | 95 function [] = variable_update(obj,t) |
94 if (t == obj.t_up) | 96 if (t == obj.t_up) |
100 ddt_x_l = obj.ddt_x_l(t); | 102 ddt_x_l = obj.ddt_x_l(t); |
101 obj.x = obj.xi*(x_r -x_l) + x_l; | 103 obj.x = obj.xi*(x_r -x_l) + x_l; |
102 obj.a = sparse(diag((-ddt_x_l*( x_r - x_l) - (obj.x-x_l)*(ddt_x_r-ddt_x_l))/(x_r-x_l))); | 104 obj.a = sparse(diag((-ddt_x_l*( x_r - x_l) - (obj.x-x_l)*(ddt_x_r-ddt_x_l))/(x_r-x_l))); |
103 | 105 |
104 obj.Ji = sparse(diag(1./(x_r - x_l + 0*obj.x))); | 106 obj.Ji = sparse(diag(1./(x_r - x_l + 0*obj.x))); |
107 obj.J = sparse(x_r -x_l); | |
105 obj.a_xi = sparse(diag(-1*(ddt_x_r - ddt_x_l + 0*obj.x))); | 108 obj.a_xi = sparse(diag(-1*(ddt_x_r - ddt_x_l + 0*obj.x))); |
106 obj.t_up = t; | 109 obj.t_up = t; |
107 end | 110 end |
108 end | 111 end |
109 | 112 |
114 [e,d,s,p] = obj.get_boundary_ops(boundary); | 117 [e,d,s,p] = obj.get_boundary_ops(boundary); |
115 | 118 |
116 switch type | 119 switch type |
117 % Dirichlet boundary condition | 120 % Dirichlet boundary condition |
118 case {'D','d','dirichlet'} | 121 case {'D','d','dirichlet'} |
119 tau1 = @(t) s * 1i*obj.Ji(p,p)^2*d; | 122 tau1 = @(t) s * 1i*obj.Ji(p,p)*d; |
120 tau2 = @(t) obj.Ji*(-1*s*obj.a(p,p) - abs(obj.a(p,p)))/4*e; | 123 tau2 = @(t) (1*s*obj.a(p,p))/2*e; |
121 closure = @(t) obj.Hi*tau1(t)*e' + obj.Hi*tau2(obj.a)*e'; | 124 closure = @(t)(obj.Hi*tau1(t)*e' + obj.Hi*tau2(obj.a)*e'); |
122 | 125 |
123 switch class(data) | 126 switch class(data) |
124 case 'double' | 127 case 'double' |
125 penalty = @(t) -obj.Ji*(obj.Hi*tau1*data+obj.Hi*tau2(obj.a)*data); | 128 penalty = @(t) -(obj.Hi*tau1*data+obj.Hi*tau2(obj.a)*data); |
126 % case 'function_handle' | 129 % case 'function_handle' |
127 % penalty = @(t)-obj.Hi*tau*data(t); | 130 % penalty = @(t)-obj.Hi*tau*data(t); |
128 otherwise | 131 otherwise |
129 error('Wierd data argument!') | 132 error('Weird data argument!') |
130 end | 133 end |
131 | 134 |
132 % Unknown, boundary condition | 135 % Unknown, boundary condition |
133 otherwise | 136 otherwise |
134 error('No such boundary condition: type = %s',type); | 137 error('No such boundary condition: type = %s',type); |
141 [e_u,d_u,s_u,p_u] = obj.get_boundary_ops(boundary); | 144 [e_u,d_u,s_u,p_u] = obj.get_boundary_ops(boundary); |
142 [e_v,d_v,s_v,p_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); | 145 [e_v,d_v,s_v,p_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); |
143 | 146 |
144 a1 = s_u* 1/2 * 1i ; | 147 a1 = s_u* 1/2 * 1i ; |
145 b1 = -s_u* 1/2 * 1i; | 148 b1 = -s_u* 1/2 * 1i; |
146 gamma = @(a) -obj.Ji*s_u*a(p_u,p_u)/2*e_u; | 149 gamma = @(a) -s_u*a(p_u,p_u)/2*e_u; |
147 | 150 |
148 tau = @(t) a1*obj.Ji(p_u,p_u)^2*d_u; | 151 tau = @(t) a1*obj.Ji(p_u,p_u)^2*d_u; |
149 sig = b1*e_u; | 152 sig = b1*e_u; |
150 | 153 |
151 closure = @(t) obj.Hi * (tau(t)*e_u' + sig*obj.Ji(p_u,p_u)^2*d_u' + gamma(obj.a)*e_u'); | 154 closure = @(t) obj.Hi * (tau(t)*e_u' + sig*obj.Ji(p_u,p_u)^2*d_u' + gamma(obj.a)*e_u'); |