Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d1_gauss_4.m @ 405:4d9d8064e58b feature/SBPInTimeGauss
Implementation of D1 based on Gauss quadrature formula with 4 nodes.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Thu, 02 Feb 2017 17:05:43 +0100 |
parents | |
children | ba73c9c8d1a6 |
comparison
equal
deleted
inserted
replaced
404:d6d27fdc342a | 405:4d9d8064e58b |
---|---|
1 function [D1,H,x,h,e_l,e_r] = d1_gauss_4(N,L) | |
2 | |
3 % L: Domain length | |
4 % N: Number of grid points | |
5 if(nargin < 2) | |
6 L = 1; | |
7 end | |
8 | |
9 if(N~=4) | |
10 error('This operator requires exactly 4 grid points'); | |
11 end | |
12 | |
13 % Quadrature nodes on interval [-1, 1] | |
14 x = [ -0.8611363115940526; -0.3399810435848563; 0.3399810435848563; 0.8611363115940526]; | |
15 | |
16 % Shift nodes to [0,L] | |
17 x = (x+1)/2*L; | |
18 | |
19 % Boundary extrapolation operators | |
20 e_l = [1.5267881254572668; -0.8136324494869273; 0.4007615203116504; -0.1139171962819899]; | |
21 e_r = flipud(e_l); | |
22 e_l = sparse(e_l); | |
23 e_r = sparse(e_r); | |
24 | |
25 %%%% Compute approximate h %%%%%%%%%% | |
26 h = L/(N-1); | |
27 %%%%%%%%%%%%%%%%%%%%%%%%% | |
28 | |
29 %%%% Norm matrix on [-1,1] %%%%%%%% | |
30 P = sparse(N,N); | |
31 P(1,1) = 0.3478548451374539; | |
32 P(2,2) = 0.6521451548625461; | |
33 P(3,3) = 0.6521451548625461; | |
34 P(4,4) = 0.3478548451374539; | |
35 %%%%%%%%%%%%%%%%%%%%%%%%% | |
36 | |
37 %%%% Norm matrix on [0,L] %%%%%%%% | |
38 H = P*L/2; | |
39 %%%%%%%%%%%%%%%%%%%%%%%%% | |
40 | |
41 %%%% D1 on [-1,1] %%%%%%%% | |
42 D1 = sparse(N,N); | |
43 D1(1,1) = -3.3320002363522817; | |
44 D1(1,2) = 4.8601544156851962; | |
45 D1(1,3) = -2.1087823484951789; | |
46 D1(1,4) = 0.5806281691622644; | |
47 | |
48 D1(2,1) = -0.7575576147992339; | |
49 D1(2,2) = -0.3844143922232086; | |
50 D1(2,3) = 1.4706702312807167; | |
51 D1(2,4) = -0.3286982242582743; | |
52 | |
53 D1(3,1) = 0.3286982242582743; | |
54 D1(3,2) = -1.4706702312807167; | |
55 D1(3,3) = 0.3844143922232086; | |
56 D1(3,4) = 0.7575576147992339; | |
57 | |
58 D1(4,1) = -0.5806281691622644; | |
59 D1(4,2) = 2.1087823484951789; | |
60 D1(4,3) = -4.8601544156851962; | |
61 D1(4,4) = 3.3320002363522817; | |
62 %%%%%%%%%%%%%%%%%%%%%%%%% | |
63 | |
64 % D1 on [0,L] | |
65 D1 = D1*2/L; |