comparison +scheme/Utux2D.m @ 905:459eeb99130f feature/utux2D

Include type as (optional) input parameter in the interface method of all schemes.
author Martin Almquist <malmquist@stanford.edu>
date Thu, 22 Nov 2018 22:03:44 -0800
parents f4595f14d696
children b9c98661ff5d
comparison
equal deleted inserted replaced
904:14b093a344eb 905:459eeb99130f
3 m % Number of points in each direction, possibly a vector 3 m % Number of points in each direction, possibly a vector
4 h % Grid spacing 4 h % Grid spacing
5 grid % Grid 5 grid % Grid
6 order % Order accuracy for the approximation 6 order % Order accuracy for the approximation
7 v0 % Initial data 7 v0 % Initial data
8 8
9 a % Wave speed a = [a1, a2]; 9 a % Wave speed a = [a1, a2];
10 % Can either be a constant vector or a cell array of function handles. 10 % Can either be a constant vector or a cell array of function handles.
11 11
12 H % Discrete norm 12 H % Discrete norm
13 H_x, H_y % Norms in the x and y directions 13 H_x, H_y % Norms in the x and y directions
14 Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms 14 Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms
15 15
16 % Derivatives 16 % Derivatives
17 Dx, Dy 17 Dx, Dy
18 18
19 % Boundary operators 19 % Boundary operators
20 e_w, e_e, e_s, e_n 20 e_w, e_e, e_s, e_n
21 21
22 D % Total discrete operator 22 D % Total discrete operator
23 23
24 % String, type of interface coupling 24 % String, type of interface coupling
25 % Default: 'upwind' 25 % Default: 'upwind'
26 % Other: 'centered' 26 % Other: 'centered'
27 coupling_type 27 coupling_type
28 28
29 % String, type of interpolation operators 29 % String, type of interpolation operators
30 % Default: 'AWW' (Almquist Wang Werpers) 30 % Default: 'AWW' (Almquist Wang Werpers)
31 % Other: 'MC' (Mattsson Carpenter) 31 % Other: 'MC' (Mattsson Carpenter)
32 interpolation_type 32 interpolation_type
33 33
34 34
35 % Cell array, damping on upwstream and downstream sides. 35 % Cell array, damping on upwstream and downstream sides.
36 interpolation_damping 36 interpolation_damping
37 37
38 end 38 end
39 39
40 40
41 methods 41 methods
42 function obj = Utux2D(g ,order, opSet, a, coupling_type, interpolation_type, interpolation_damping) 42 function obj = Utux2D(g ,order, opSet, a, coupling_type, interpolation_type, interpolation_damping)
43 43
44 default_arg('interpolation_damping',{0,0}); 44 default_arg('interpolation_damping',{0,0});
45 default_arg('interpolation_type','AWW'); 45 default_arg('interpolation_type','AWW');
46 default_arg('coupling_type','upwind'); 46 default_arg('coupling_type','upwind');
47 default_arg('a',1/sqrt(2)*[1, 1]); 47 default_arg('a',1/sqrt(2)*[1, 1]);
48 default_arg('opSet',@sbp.D2Standard); 48 default_arg('opSet',@sbp.D2Standard);
49 49
50 assert(isa(g, 'grid.Cartesian')) 50 assert(isa(g, 'grid.Cartesian'))
51 if iscell(a) 51 if iscell(a)
52 a1 = grid.evalOn(g, a{1}); 52 a1 = grid.evalOn(g, a{1});
53 a2 = grid.evalOn(g, a{2}); 53 a2 = grid.evalOn(g, a{2});
54 a = {spdiag(a1), spdiag(a2)}; 54 a = {spdiag(a1), spdiag(a2)};
55 else 55 else
56 a = {a(1), a(2)}; 56 a = {a(1), a(2)};
57 end 57 end
58 58
59 m = g.size(); 59 m = g.size();
60 m_x = m(1); 60 m_x = m(1);
61 m_y = m(2); 61 m_y = m(2);
62 m_tot = g.N(); 62 m_tot = g.N();
63 63
68 % Operator sets 68 % Operator sets
69 ops_x = opSet(m_x, xlim, order); 69 ops_x = opSet(m_x, xlim, order);
70 ops_y = opSet(m_y, ylim, order); 70 ops_y = opSet(m_y, ylim, order);
71 Ix = speye(m_x); 71 Ix = speye(m_x);
72 Iy = speye(m_y); 72 Iy = speye(m_y);
73 73
74 % Norms 74 % Norms
75 Hx = ops_x.H; 75 Hx = ops_x.H;
76 Hy = ops_y.H; 76 Hy = ops_y.H;
77 Hxi = ops_x.HI; 77 Hxi = ops_x.HI;
78 Hyi = ops_y.HI; 78 Hyi = ops_y.HI;
79 79
80 obj.H_x = Hx; 80 obj.H_x = Hx;
81 obj.H_y = Hy; 81 obj.H_y = Hy;
82 obj.H = kron(Hx,Hy); 82 obj.H = kron(Hx,Hy);
83 obj.Hi = kron(Hxi,Hyi); 83 obj.Hi = kron(Hxi,Hyi);
84 obj.Hx = kron(Hx,Iy); 84 obj.Hx = kron(Hx,Iy);
85 obj.Hy = kron(Ix,Hy); 85 obj.Hy = kron(Ix,Hy);
86 obj.Hxi = kron(Hxi,Iy); 86 obj.Hxi = kron(Hxi,Iy);
87 obj.Hyi = kron(Ix,Hyi); 87 obj.Hyi = kron(Ix,Hyi);
88 88
89 % Derivatives 89 % Derivatives
90 Dx = ops_x.D1; 90 Dx = ops_x.D1;
91 Dy = ops_y.D1; 91 Dy = ops_y.D1;
92 obj.Dx = kron(Dx,Iy); 92 obj.Dx = kron(Dx,Iy);
93 obj.Dy = kron(Ix,Dy); 93 obj.Dy = kron(Ix,Dy);
94 94
95 % Boundary operators 95 % Boundary operators
96 obj.e_w = kr(ops_x.e_l, Iy); 96 obj.e_w = kr(ops_x.e_l, Iy);
97 obj.e_e = kr(ops_x.e_r, Iy); 97 obj.e_e = kr(ops_x.e_r, Iy);
98 obj.e_s = kr(Ix, ops_y.e_l); 98 obj.e_s = kr(Ix, ops_y.e_l);
99 obj.e_n = kr(Ix, ops_y.e_r); 99 obj.e_n = kr(Ix, ops_y.e_r);
115 % data is a function returning the data that should be applied at the boundary. 115 % data is a function returning the data that should be applied at the boundary.
116 % neighbour_scheme is an instance of Scheme that should be interfaced to. 116 % neighbour_scheme is an instance of Scheme that should be interfaced to.
117 % neighbour_boundary is a string specifying which boundary to interface to. 117 % neighbour_boundary is a string specifying which boundary to interface to.
118 function [closure, penalty] = boundary_condition(obj,boundary,type) 118 function [closure, penalty] = boundary_condition(obj,boundary,type)
119 default_arg('type','dirichlet'); 119 default_arg('type','dirichlet');
120 120
121 sigma = -1; % Scalar penalty parameter 121 sigma = -1; % Scalar penalty parameter
122 switch boundary 122 switch boundary
123 case {'w','W','west','West'} 123 case {'w','W','west','West'}
124 tau = sigma*obj.a{1}*obj.e_w*obj.H_y; 124 tau = sigma*obj.a{1}*obj.e_w*obj.H_y;
125 closure = obj.Hi*tau*obj.e_w'; 125 closure = obj.Hi*tau*obj.e_w';
126 126
127 case {'s','S','south','South'} 127 case {'s','S','south','South'}
128 tau = sigma*obj.a{2}*obj.e_s*obj.H_x; 128 tau = sigma*obj.a{2}*obj.e_s*obj.H_x;
129 closure = obj.Hi*tau*obj.e_s'; 129 closure = obj.Hi*tau*obj.e_s';
130 end 130 end
131 penalty = -obj.Hi*tau; 131 penalty = -obj.Hi*tau;
132 132
133 end 133 end
134 134
135 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) 135 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
136 136
137 % Get neighbour boundary operator 137 % Get neighbour boundary operator
138 switch neighbour_boundary 138 switch neighbour_boundary
139 case {'e','E','east','East'} 139 case {'e','E','east','East'}
140 e_neighbour = neighbour_scheme.e_e; 140 e_neighbour = neighbour_scheme.e_e;
141 m_neighbour = neighbour_scheme.m(2); 141 m_neighbour = neighbour_scheme.m(2);
147 m_neighbour = neighbour_scheme.m(1); 147 m_neighbour = neighbour_scheme.m(1);
148 case {'s','S','south','South'} 148 case {'s','S','south','South'}
149 e_neighbour = neighbour_scheme.e_s; 149 e_neighbour = neighbour_scheme.e_s;
150 m_neighbour = neighbour_scheme.m(1); 150 m_neighbour = neighbour_scheme.m(1);
151 end 151 end
152 152
153 switch obj.coupling_type 153 switch obj.coupling_type
154 154
155 % Upwind coupling (energy dissipation) 155 % Upwind coupling (energy dissipation)
156 case 'upwind' 156 case 'upwind'
157 sigma_ds = -1; %"Downstream" penalty 157 sigma_ds = -1; %"Downstream" penalty
158 sigma_us = 0; %"Upstream" penalty 158 sigma_us = 0; %"Upstream" penalty
159 159
167 end 167 end
168 168
169 % Check grid ratio for interpolation 169 % Check grid ratio for interpolation
170 switch boundary 170 switch boundary
171 case {'w','W','west','West','e','E','east','East'} 171 case {'w','W','west','West','e','E','east','East'}
172 m = obj.m(2); 172 m = obj.m(2);
173 case {'s','S','south','South','n','N','north','North'} 173 case {'s','S','south','South','n','N','north','North'}
174 m = obj.m(1); 174 m = obj.m(1);
175 end 175 end
176 grid_ratio = m/m_neighbour; 176 grid_ratio = m/m_neighbour;
177 if grid_ratio ~= 1 177 if grid_ratio ~= 1
195 I_local2neighbour_ds = interpOpSet.IF2C; 195 I_local2neighbour_ds = interpOpSet.IF2C;
196 end 196 end
197 case 'AWW' 197 case 'AWW'
198 %String 'C2F' indicates that ICF2 is more accurate. 198 %String 'C2F' indicates that ICF2 is more accurate.
199 interpOpSetF2C = sbp.InterpAWW(ms(1),ms(2),orders(1),orders(2),'F2C'); 199 interpOpSetF2C = sbp.InterpAWW(ms(1),ms(2),orders(1),orders(2),'F2C');
200 interpOpSetC2F = sbp.InterpAWW(ms(1),ms(2),orders(1),orders(2),'C2F'); 200 interpOpSetC2F = sbp.InterpAWW(ms(1),ms(2),orders(1),orders(2),'C2F');
201 if grid_ratio < 1 201 if grid_ratio < 1
202 % Local is coarser than neighbour 202 % Local is coarser than neighbour
203 I_neighbour2local_us = interpOpSetC2F.IF2C; 203 I_neighbour2local_us = interpOpSetC2F.IF2C;
204 I_neighbour2local_ds = interpOpSetF2C.IF2C; 204 I_neighbour2local_ds = interpOpSetF2C.IF2C;
205 I_local2neighbour_us = interpOpSetC2F.IC2F; 205 I_local2neighbour_us = interpOpSetC2F.IC2F;
206 I_local2neighbour_ds = interpOpSetF2C.IC2F; 206 I_local2neighbour_ds = interpOpSetF2C.IC2F;
207 elseif grid_ratio > 1 207 elseif grid_ratio > 1
208 % Local is finer than neighbour 208 % Local is finer than neighbour
209 I_neighbour2local_us = interpOpSetF2C.IC2F; 209 I_neighbour2local_us = interpOpSetF2C.IC2F;
210 I_neighbour2local_ds = interpOpSetC2F.IC2F; 210 I_neighbour2local_ds = interpOpSetC2F.IC2F;
211 I_local2neighbour_us = interpOpSetF2C.IF2C; 211 I_local2neighbour_us = interpOpSetF2C.IF2C;
212 I_local2neighbour_ds = interpOpSetC2F.IF2C; 212 I_local2neighbour_ds = interpOpSetC2F.IF2C;
213 end 213 end
214 otherwise 214 otherwise
215 error(['Interpolation type ' obj.interpolation_type ... 215 error(['Interpolation type ' obj.interpolation_type ...
216 ' is not available.' ]); 216 ' is not available.' ]);
217 end 217 end
218 218
219 else 219 else
220 % No interpolation required 220 % No interpolation required
221 I_neighbour2local_us = speye(m,m); 221 I_neighbour2local_us = speye(m,m);
222 I_neighbour2local_ds = speye(m,m); 222 I_neighbour2local_ds = speye(m,m);
223 end 223 end
224 224
225 int_damp_us = obj.interpolation_damping{1}; 225 int_damp_us = obj.interpolation_damping{1};
226 int_damp_ds = obj.interpolation_damping{2}; 226 int_damp_ds = obj.interpolation_damping{2};
227 227
228 I = speye(m,m); 228 I = speye(m,m);
229 I_back_forth_us = I_neighbour2local_us*I_local2neighbour_us; 229 I_back_forth_us = I_neighbour2local_us*I_local2neighbour_us;
236 closure = obj.Hi*tau*obj.e_w'; 236 closure = obj.Hi*tau*obj.e_w';
237 penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; 237 penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour';
238 238
239 beta = int_damp_ds*obj.a{1}... 239 beta = int_damp_ds*obj.a{1}...
240 *obj.e_w*obj.H_y; 240 *obj.e_w*obj.H_y;
241 closure = closure + obj.Hi*beta*(I_back_forth_ds - I)*obj.e_w'; 241 closure = closure + obj.Hi*beta*(I_back_forth_ds - I)*obj.e_w';
242 case {'e','E','east','East'} 242 case {'e','E','east','East'}
243 tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; 243 tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y;
244 closure = obj.Hi*tau*obj.e_e'; 244 closure = obj.Hi*tau*obj.e_e';
245 penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; 245 penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour';
246 246
247 beta = int_damp_us*obj.a{1}... 247 beta = int_damp_us*obj.a{1}...
248 *obj.e_e*obj.H_y; 248 *obj.e_e*obj.H_y;
249 closure = closure + obj.Hi*beta*(I_back_forth_us - I)*obj.e_e'; 249 closure = closure + obj.Hi*beta*(I_back_forth_us - I)*obj.e_e';
250 case {'s','S','south','South'} 250 case {'s','S','south','South'}
251 tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; 251 tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x;
252 closure = obj.Hi*tau*obj.e_s'; 252 closure = obj.Hi*tau*obj.e_s';
253 penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; 253 penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour';
254 254
255 beta = int_damp_ds*obj.a{2}... 255 beta = int_damp_ds*obj.a{2}...
256 *obj.e_s*obj.H_x; 256 *obj.e_s*obj.H_x;
257 closure = closure + obj.Hi*beta*(I_back_forth_ds - I)*obj.e_s'; 257 closure = closure + obj.Hi*beta*(I_back_forth_ds - I)*obj.e_s';
260 closure = obj.Hi*tau*obj.e_n'; 260 closure = obj.Hi*tau*obj.e_n';
261 penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; 261 penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour';
262 262
263 beta = int_damp_us*obj.a{2}... 263 beta = int_damp_us*obj.a{2}...
264 *obj.e_n*obj.H_x; 264 *obj.e_n*obj.H_x;
265 closure = closure + obj.Hi*beta*(I_back_forth_us - I)*obj.e_n'; 265 closure = closure + obj.Hi*beta*(I_back_forth_us - I)*obj.e_n';
266 end 266 end
267 267
268 268
269 end 269 end
270 270
271 function N = size(obj) 271 function N = size(obj)
272 N = obj.m; 272 N = obj.m;
273 end 273 end
274 274
275 end 275 end