Mercurial > repos > public > sbplib
comparison +time/CdiffImplicit.m @ 1197:433c89bf19e0 feature/rv
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 07 Aug 2019 15:23:42 +0200 |
parents | 1a30dbe99c7c |
children | 47e86b5270ad |
comparison
equal
deleted
inserted
replaced
1196:f6c571d8f22f | 1197:433c89bf19e0 |
---|---|
1 classdef CdiffImplicit < time.Timestepper | 1 classdef CdiffImplicit < time.Timestepper |
2 properties | 2 properties |
3 A, B, C, G | 3 A, B, C |
4 AA, BB, CC | 4 AA, BB, CC |
5 G | |
5 k | 6 k |
6 t | 7 t |
7 v, v_prev | 8 v, v_prev |
8 n | 9 n |
9 | 10 |
11 L,U,p,q | 12 L,U,p,q |
12 end | 13 end |
13 | 14 |
14 methods | 15 methods |
15 % Solves | 16 % Solves |
16 % A*u_tt + B*u + C*v_t = G(t) | 17 % A*v_tt + B*v_t + C*v = G(t) |
17 % u(t0) = f1 | 18 % v(t0) = v0 |
18 % u_t(t0) = f2 | 19 % v_t(t0) = v0t |
19 % starting at time t0 with timestep k | 20 % starting at time t0 with timestep |
20 function obj = CdiffImplicit(A, B, C, G, f1, f2, k, t0) | 21 % Using |
21 default_arg('A', []); | 22 % A*Dp*Dm*v_n + B*D0*v_n + C*I0*v_n = G(t_n) |
22 default_arg('C', []); | 23 function obj = CdiffImplicit(A, B, C, G, v0, v0t, k, t0) |
23 default_arg('G', []); | 24 m = length(v0); |
24 default_arg('f1', 0); | 25 default_arg('A', speye(m)); |
25 default_arg('f2', 0); | 26 default_arg('B', sparse(m,m)); |
27 default_arg('G', @(t) sparse(m,1)); | |
26 default_arg('t0', 0); | 28 default_arg('t0', 0); |
27 | |
28 m = size(B,1); | |
29 | |
30 if isempty(A) | |
31 A = speye(m); | |
32 end | |
33 | |
34 if isempty(C) | |
35 C = sparse(m,m); | |
36 end | |
37 | |
38 if isempty(G) | |
39 G = @(t) sparse(m,1); | |
40 end | |
41 | |
42 if isempty(f1) | |
43 f1 = sparse(m,1); | |
44 end | |
45 | |
46 if isempty(f2) | |
47 f2 = sparse(m,1); | |
48 end | |
49 | 29 |
50 obj.A = A; | 30 obj.A = A; |
51 obj.B = B; | 31 obj.B = B; |
52 obj.C = C; | 32 obj.C = C; |
53 obj.G = G; | 33 obj.G = G; |
54 | 34 |
55 AA = 1/k^2*A + 1/2*B + 1/(2*k)*C; | 35 % Rewrite as AA*v_(n+1) + BB*v_n + CC*v_(n-1) = G(t_n) |
56 BB = -2/k^2*A; | 36 AA = A/k^2 + B/(2*k) + C/2; |
57 CC = 1/k^2*A + 1/2*B - 1/(2*k)*C; | 37 BB = -2*A/k^2; |
58 % AA*v_next + BB*v + CC*v_prev == G(t_n) | 38 CC = A/k^2 - B/(2*k) + C/2; |
59 | 39 |
60 obj.AA = AA; | 40 obj.AA = AA; |
61 obj.BB = BB; | 41 obj.BB = BB; |
62 obj.CC = CC; | 42 obj.CC = CC; |
63 | 43 |
64 v_prev = f1; | 44 v_prev = v0; |
65 I = speye(m); | 45 I = speye(m); |
66 % v = (1/k^2*A)\((1/k^2*A - 1/2*B)*f1 + (1/k*I - 1/2*C)*f2 + 1/2*G(0)); | 46 v = v0 + k*v0t; |
67 v = f1 + k*f2; | |
68 | |
69 | 47 |
70 if ~issparse(A) || ~issparse(B) || ~issparse(C) | 48 if ~issparse(A) || ~issparse(B) || ~issparse(C) |
71 error('LU factorization with full pivoting only works for sparse matrices.') | 49 error('LU factorization with full pivoting only works for sparse matrices.') |
72 end | 50 end |
73 | 51 |
75 | 53 |
76 obj.L = L; | 54 obj.L = L; |
77 obj.U = U; | 55 obj.U = U; |
78 obj.p = p; | 56 obj.p = p; |
79 obj.q = q; | 57 obj.q = q; |
80 | |
81 | 58 |
82 obj.k = k; | 59 obj.k = k; |
83 obj.t = t0+k; | 60 obj.t = t0+k; |
84 obj.n = 1; | 61 obj.n = 1; |
85 obj.v = v; | 62 obj.v = v; |
90 v = obj.v; | 67 v = obj.v; |
91 t = obj.t; | 68 t = obj.t; |
92 end | 69 end |
93 | 70 |
94 function [vt,t] = getVt(obj) | 71 function [vt,t] = getVt(obj) |
95 % Calculate next time step to be able to do centered diff. | 72 vt = (obj.v-obj.v_prev)/obj.k; % Could be improved using u_tt = f(u)) |
96 v_next = zeros(size(obj.v)); | 73 t = obj.t; |
97 b = obj.G(obj.t) - obj.BB*obj.v - obj.CC*obj.v_prev; | 74 end |
98 | 75 |
99 y = obj.L\b(obj.p); | 76 % Calculate the conserved energy (Dm*v_n)^2_A + Im*v_n^2_B |
100 z = obj.U\y; | 77 function E = getEnergy(obj) |
101 v_next(obj.q) = z; | 78 v = obj.v; |
79 vp = obj.v_prev; | |
80 vt = (obj.v - obj.v_prev)/obj.k; | |
102 | 81 |
103 | 82 E = vt'*obj.A*vt + 1/2*(v'*obj.C*v + vp'*obj.C*vp); |
104 vt = (v_next-obj.v_prev)/(2*obj.k); | |
105 t = obj.t; | |
106 end | 83 end |
107 | 84 |
108 function obj = step(obj) | 85 function obj = step(obj) |
109 b = obj.G(obj.t) - obj.BB*obj.v - obj.CC*obj.v_prev; | 86 b = obj.G(obj.t) - obj.BB*obj.v - obj.CC*obj.v_prev; |
110 obj.v_prev = obj.v; | 87 obj.v_prev = obj.v; |
121 obj.t = obj.t + obj.k; | 98 obj.t = obj.t + obj.k; |
122 obj.n = obj.n + 1; | 99 obj.n = obj.n + 1; |
123 end | 100 end |
124 end | 101 end |
125 end | 102 end |
126 | |
127 | |
128 | |
129 | |
130 | |
131 %%% Derivation | |
132 % syms A B C G | |
133 % syms n k | |
134 % syms f1 f2 | |
135 | |
136 % v = symfun(sym('v(n)'),n); | |
137 | |
138 | |
139 % d = A/k^2 * (v(n+1) - 2*v(n) +v(n-1)) + B/2*(v(n+1)+v(n-1)) + C/(2*k)*(v(n+1) - v(n-1)) == G | |
140 % ic1 = v(0) == f1 | |
141 % ic2 = A/k*(v(1)-f1) + k/2*(B*f1 + C*f2 - G) - f2 == 0 | |
142 | |
143 % c = collect(d, [v(n) v(n-1) v(n+1)]) % (-(2*A)/k^2)*v(n) + (B/2 + A/k^2 - C/(2*k))*v(n - 1) + (B/2 + A/k^2 + C/(2*k))*v(n + 1) == G | |
144 % syms AA BB CC | |
145 % % AA = B/2 + A/k^2 + C/(2*k) | |
146 % % BB = -(2*A)/k^2 | |
147 % % CC = B/2 + A/k^2 - C/(2*k) | |
148 % s = subs(c, [B/2 + A/k^2 + C/(2*k), -(2*A)/k^2, B/2 + A/k^2 - C/(2*k)], [AA, BB, CC]) | |
149 | |
150 | |
151 % ic2_a = collect(ic2, [v(1) f1 f2]) % (A/k)*v(1) + ((B*k)/2 - A/k)*f1 + ((C*k)/2 - 1)*f2 - (G*k)/2 == 0 | |
152 |