Mercurial > repos > public > sbplib
comparison +scheme/Laplace1d.m @ 1197:433c89bf19e0 feature/rv
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 07 Aug 2019 15:23:42 +0200 |
parents | 33c378e508d2 |
children |
comparison
equal
deleted
inserted
replaced
1196:f6c571d8f22f | 1197:433c89bf19e0 |
---|---|
54 % neighbour_boundary is a string specifying which boundary to interface to. | 54 % neighbour_boundary is a string specifying which boundary to interface to. |
55 function [closure, penalty] = boundary_condition(obj,boundary,type,data) | 55 function [closure, penalty] = boundary_condition(obj,boundary,type,data) |
56 default_arg('type','neumann'); | 56 default_arg('type','neumann'); |
57 default_arg('data',0); | 57 default_arg('data',0); |
58 | 58 |
59 [e,d,s] = obj.get_boundary_ops(boundary); | 59 e = obj.getBoundaryOperator('e', boundary); |
60 d = obj.getBoundaryOperator('d', boundary); | |
61 s = obj.getBoundarySign(boundary); | |
60 | 62 |
61 switch type | 63 switch type |
62 % Dirichlet boundary condition | 64 % Dirichlet boundary condition |
63 case {'D','dirichlet'} | 65 case {'D','d','dirichlet'} |
64 tuning = 1.1; | 66 tuning = 1.1; |
65 tau1 = -tuning/obj.gamm; | 67 tau1 = -tuning/obj.gamm; |
66 tau2 = 1; | 68 tau2 = 1; |
67 | 69 |
68 tau = tau1*e + tau2*d; | 70 tau = tau1*e + tau2*d; |
69 | 71 |
70 closure = obj.a*obj.Hi*tau*e'; | 72 closure = obj.a*obj.Hi*tau*e'; |
71 penalty = obj.a*obj.Hi*tau; | 73 penalty = -obj.a*obj.Hi*tau; |
72 | 74 |
73 % Neumann boundary condition | 75 % Neumann boundary condition |
74 case {'N','neumann'} | 76 case {'N','n','neumann'} |
75 tau = -e; | 77 tau = -e; |
76 | 78 |
77 closure = obj.a*obj.Hi*tau*d'; | 79 closure = obj.a*obj.Hi*tau*d'; |
78 penalty = -obj.a*obj.Hi*tau; | 80 penalty = -obj.a*obj.Hi*tau; |
79 | 81 |
84 end | 86 end |
85 | 87 |
86 function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) | 88 function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) |
87 % u denotes the solution in the own domain | 89 % u denotes the solution in the own domain |
88 % v denotes the solution in the neighbour domain | 90 % v denotes the solution in the neighbour domain |
91 e_u = obj.getBoundaryOperator('e', boundary); | |
92 d_u = obj.getBoundaryOperator('d', boundary); | |
93 s_u = obj.getBoundarySign(boundary); | |
89 | 94 |
90 [e_u,d_u,s_u] = obj.get_boundary_ops(boundary); | 95 e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); |
91 [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); | 96 d_v = neighbour_scheme.getBoundaryOperator('d', neighbour_boundary); |
92 | 97 s_v = neighbour_scheme.getBoundarySign(neighbour_boundary); |
93 | 98 |
94 a_u = obj.a; | 99 a_u = obj.a; |
95 a_v = neighbour_scheme.a; | 100 a_v = neighbour_scheme.a; |
96 | 101 |
97 gamm_u = obj.gamm; | 102 gamm_u = obj.gamm; |
98 gamm_v = neighbour_scheme.gamm; | 103 gamm_v = neighbour_scheme.gamm; |
99 | 104 |
100 tuning = 1.1; | 105 tuning = 1.1; |
101 | 106 |
102 tau1 = -(a_u/gamm_u + a_v/gamm_v) * tuning; | 107 tau1 = -1/4*(a_u/gamm_u + a_v/gamm_v) * tuning; |
103 tau2 = 1/2*a_u; | 108 tau2 = 1/2*a_u; |
104 sig1 = -1/2; | 109 sig1 = -1/2; |
105 sig2 = 0; | 110 sig2 = 0; |
106 | 111 |
107 tau = tau1*e_u + tau2*d_u; | 112 tau = tau1*e_u + tau2*d_u; |
109 | 114 |
110 closure = obj.Hi*( tau*e_u' + sig*a_u*d_u'); | 115 closure = obj.Hi*( tau*e_u' + sig*a_u*d_u'); |
111 penalty = obj.Hi*(-tau*e_v' + sig*a_v*d_v'); | 116 penalty = obj.Hi*(-tau*e_v' + sig*a_v*d_v'); |
112 end | 117 end |
113 | 118 |
114 % Ruturns the boundary ops and sign for the boundary specified by the string boundary. | 119 % Returns the boundary operator op for the boundary specified by the string boundary. |
115 % The right boundary is considered the positive boundary | 120 % op -- string |
116 function [e,d,s] = get_boundary_ops(obj,boundary) | 121 % boundary -- string |
122 function o = getBoundaryOperator(obj, op, boundary) | |
123 assertIsMember(op, {'e', 'd'}) | |
124 assertIsMember(boundary, {'l', 'r'}) | |
125 | |
126 o = obj.([op, '_', boundary]); | |
127 end | |
128 | |
129 % Returns square boundary quadrature matrix, of dimension | |
130 % corresponding to the number of boundary points | |
131 % | |
132 % boundary -- string | |
133 % Note: for 1d diffOps, the boundary quadrature is the scalar 1. | |
134 function H_b = getBoundaryQuadrature(obj, boundary) | |
135 assertIsMember(boundary, {'l', 'r'}) | |
136 | |
137 H_b = 1; | |
138 end | |
139 | |
140 % Returns the boundary sign. The right boundary is considered the positive boundary | |
141 % boundary -- string | |
142 function s = getBoundarySign(obj, boundary) | |
143 assertIsMember(boundary, {'l', 'r'}) | |
144 | |
117 switch boundary | 145 switch boundary |
118 case 'l' | 146 case {'r'} |
119 e = obj.e_l; | 147 s = 1; |
120 d = obj.d_l; | 148 case {'l'} |
121 s = -1; | 149 s = -1; |
122 case 'r' | |
123 e = obj.e_r; | |
124 d = obj.d_r; | |
125 s = 1; | |
126 otherwise | |
127 error('No such boundary: boundary = %s',boundary); | |
128 end | 150 end |
129 end | 151 end |
130 | 152 |
131 function N = size(obj) | 153 function N = size(obj) |
132 N = obj.grid.size(); | 154 N = obj.grid.size(); |
133 end | 155 end |
134 | 156 |
135 end | 157 end |
136 | |
137 methods(Static) | |
138 % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u | |
139 % and bound_v of scheme schm_v. | |
140 % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') | |
141 function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) | |
142 [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); | |
143 [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); | |
144 end | |
145 end | |
146 end | 158 end |