Mercurial > repos > public > sbplib
comparison +scheme/Beam.m @ 1197:433c89bf19e0 feature/rv
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 07 Aug 2019 15:23:42 +0200 |
parents | 0c504a21432d |
children |
comparison
equal
deleted
inserted
replaced
1196:f6c571d8f22f | 1197:433c89bf19e0 |
---|---|
84 % neighbour_scheme is an instance of Scheme that should be interfaced to. | 84 % neighbour_scheme is an instance of Scheme that should be interfaced to. |
85 % neighbour_boundary is a string specifying which boundary to interface to. | 85 % neighbour_boundary is a string specifying which boundary to interface to. |
86 function [closure, penalty] = boundary_condition(obj,boundary,type) | 86 function [closure, penalty] = boundary_condition(obj,boundary,type) |
87 default_arg('type','dn'); | 87 default_arg('type','dn'); |
88 | 88 |
89 [e, d1, d2, d3, s] = obj.get_boundary_ops(boundary); | 89 e = obj.getBoundaryOperator('e', boundary); |
90 d1 = obj.getBoundaryOperator('d1', boundary); | |
91 d2 = obj.getBoundaryOperator('d2', boundary); | |
92 d3 = obj.getBoundaryOperator('d3', boundary); | |
93 s = obj.getBoundarySign(boundary); | |
90 gamm = obj.gamm; | 94 gamm = obj.gamm; |
91 delt = obj.delt; | 95 delt = obj.delt; |
92 | 96 |
93 | 97 |
94 % TODO: Can this be simplifed? Can I handle conditions on u on its own, u_x on its own ... | 98 % TODO: Can this be simplifed? Can I handle conditions on u on its own, u_x on its own ... |
122 tau = s*a*d1; | 126 tau = s*a*d1; |
123 sig = -s*a*e; | 127 sig = -s*a*e; |
124 | 128 |
125 closure = obj.Hi*(tau*d2' + sig*d3'); | 129 closure = obj.Hi*(tau*d2' + sig*d3'); |
126 penalty{1} = -obj.Hi*tau; | 130 penalty{1} = -obj.Hi*tau; |
127 penalty{1} = -obj.Hi*sig; | 131 penalty{2} = -obj.Hi*sig; |
128 | 132 |
129 case 'e' | 133 case 'e' |
130 alpha = obj.alpha; | 134 alpha = obj.alpha; |
131 tuning = 1.1; | 135 tuning = 1.1; |
132 | 136 |
171 end | 175 end |
172 | 176 |
173 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary, type) | 177 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary, type) |
174 % u denotes the solution in the own domain | 178 % u denotes the solution in the own domain |
175 % v denotes the solution in the neighbour domain | 179 % v denotes the solution in the neighbour domain |
176 [e_u,d1_u,d2_u,d3_u,s_u] = obj.get_boundary_ops(boundary); | 180 e_u = obj.getBoundaryOperator('e', boundary); |
177 [e_v,d1_v,d2_v,d3_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); | 181 d1_u = obj.getBoundaryOperator('d1', boundary); |
178 | 182 d2_u = obj.getBoundaryOperator('d2', boundary); |
183 d3_u = obj.getBoundaryOperator('d3', boundary); | |
184 s_u = obj.getBoundarySign(boundary); | |
185 | |
186 e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); | |
187 d1_v = neighbour_scheme.getBoundaryOperator('d1', neighbour_boundary); | |
188 d2_v = neighbour_scheme.getBoundaryOperator('d2', neighbour_boundary); | |
189 d3_v = neighbour_scheme.getBoundaryOperator('d3', neighbour_boundary); | |
190 s_v = neighbour_scheme.getBoundarySign(neighbour_boundary); | |
179 | 191 |
180 alpha_u = obj.alpha; | 192 alpha_u = obj.alpha; |
181 alpha_v = neighbour_scheme.alpha; | 193 alpha_v = neighbour_scheme.alpha; |
182 | |
183 | 194 |
184 switch boundary | 195 switch boundary |
185 case 'l' | 196 case 'l' |
186 interface_opt = obj.opt.interface_l; | 197 interface_opt = obj.opt.interface_l; |
187 case 'r' | 198 case 'r' |
232 | 243 |
233 closure = obj.Hi*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); | 244 closure = obj.Hi*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); |
234 penalty = -obj.Hi*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); | 245 penalty = -obj.Hi*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); |
235 end | 246 end |
236 | 247 |
237 % Returns the boundary ops and sign for the boundary specified by the string boundary. | 248 % Returns the boundary operator op for the boundary specified by the string boundary. |
238 % The right boundary is considered the positive boundary | 249 % op -- string |
239 function [e, d1, d2, d3, s] = get_boundary_ops(obj,boundary) | 250 % boundary -- string |
251 function o = getBoundaryOperator(obj, op, boundary) | |
252 assertIsMember(op, {'e', 'd1', 'd2', 'd3'}) | |
253 assertIsMember(boundary, {'l', 'r'}) | |
254 | |
255 o = obj.([op, '_', boundary]); | |
256 end | |
257 | |
258 % Returns square boundary quadrature matrix, of dimension | |
259 % corresponding to the number of boundary points | |
260 % | |
261 % boundary -- string | |
262 % Note: for 1d diffOps, the boundary quadrature is the scalar 1. | |
263 function H_b = getBoundaryQuadrature(obj, boundary) | |
264 assertIsMember(boundary, {'l', 'r'}) | |
265 | |
266 H_b = 1; | |
267 end | |
268 | |
269 % Returns the boundary sign. The right boundary is considered the positive boundary | |
270 % boundary -- string | |
271 function s = getBoundarySign(obj, boundary) | |
272 assertIsMember(boundary, {'l', 'r'}) | |
273 | |
240 switch boundary | 274 switch boundary |
241 case 'l' | 275 case {'r'} |
242 e = obj.e_l; | 276 s = 1; |
243 d1 = obj.d1_l; | 277 case {'l'} |
244 d2 = obj.d2_l; | |
245 d3 = obj.d3_l; | |
246 s = -1; | 278 s = -1; |
247 case 'r' | |
248 e = obj.e_r; | |
249 d1 = obj.d1_r; | |
250 d2 = obj.d2_r; | |
251 d3 = obj.d3_r; | |
252 s = 1; | |
253 otherwise | |
254 error('No such boundary: boundary = %s',boundary); | |
255 end | 279 end |
256 end | 280 end |
257 | 281 |
258 function N = size(obj) | 282 function N = size(obj) |
259 N = obj.grid.N; | 283 N = obj.grid.N; |