Mercurial > repos > public > sbplib
comparison +scheme/Hypsyst3dCurve.m @ 395:359861563866 feature/beams
Merge with default.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 26 Jan 2017 15:17:38 +0100 |
parents | 9d1fc984f40d |
children | feebfca90080 459eeb99130f |
comparison
equal
deleted
inserted
replaced
394:026d8a3fdbfb | 395:359861563866 |
---|---|
1 classdef Hypsyst3dCurve < scheme.Scheme | |
2 properties | |
3 m % Number of points in each direction, possibly a vector | |
4 n %size of system | |
5 h % Grid spacing | |
6 X, Y, Z% Values of x and y for each grid point | |
7 Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces | |
8 | |
9 xi,eta,zeta | |
10 Xi, Eta, Zeta | |
11 | |
12 Eta_xi, Zeta_xi, Xi_eta, Zeta_eta, Xi_zeta, Eta_zeta % Metric terms | |
13 X_xi, X_eta, X_zeta,Y_xi,Y_eta,Y_zeta,Z_xi,Z_eta,Z_zeta % Metric terms | |
14 | |
15 order % Order accuracy for the approximation | |
16 | |
17 D % non-stabalized scheme operator | |
18 Aevaluated, Bevaluated, Cevaluated, Eevaluated % Numeric Coeffiecient matrices | |
19 Ahat, Bhat, Chat % Symbolic Transformed Coefficient matrices | |
20 A, B, C, E % Symbolic coeffiecient matrices | |
21 | |
22 J, Ji % JAcobian and inverse Jacobian | |
23 | |
24 H % Discrete norm | |
25 % Norms in the x, y and z directions | |
26 Hxii,Hetai,Hzetai, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. | |
27 Hxi,Heta,Hzeta | |
28 I_xi,I_eta,I_zeta, I_N,onesN | |
29 e_w, e_e, e_s, e_n, e_b, e_t | |
30 index_w, index_e,index_s,index_n, index_b, index_t | |
31 params %parameters for the coeficient matrice | |
32 end | |
33 | |
34 | |
35 methods | |
36 function obj = Hypsyst3dCurve(m, order, A, B,C, E, params,ti,operator) | |
37 xilim ={0 1}; | |
38 etalim = {0 1}; | |
39 zetalim = {0 1}; | |
40 | |
41 if length(m) == 1 | |
42 m = [m m m]; | |
43 end | |
44 m_xi = m(1); | |
45 m_eta = m(2); | |
46 m_zeta = m(3); | |
47 m_tot = m_xi*m_eta*m_zeta; | |
48 obj.params = params; | |
49 obj.n = length(A(obj,0,0,0)); | |
50 | |
51 obj.m = m; | |
52 obj.order = order; | |
53 obj.onesN = ones(obj.n); | |
54 | |
55 switch operator | |
56 case 'upwind' | |
57 ops_xi = sbp.D1Upwind(m_xi,xilim,order); | |
58 ops_eta = sbp.D1Upwind(m_eta,etalim,order); | |
59 ops_zeta = sbp.D1Upwind(m_zeta,zetalim,order); | |
60 case 'standard' | |
61 ops_xi = sbp.D2Standard(m_xi,xilim,order); | |
62 ops_eta = sbp.D2Standard(m_eta,etalim,order); | |
63 ops_zeta = sbp.D2Standard(m_zeta,zetalim,order); | |
64 otherwise | |
65 error('Operator not available') | |
66 end | |
67 | |
68 obj.xi = ops_xi.x; | |
69 obj.eta = ops_eta.x; | |
70 obj.zeta = ops_zeta.x; | |
71 | |
72 obj.Xi = kr(obj.xi,ones(m_eta,1),ones(m_zeta,1)); | |
73 obj.Eta = kr(ones(m_xi,1),obj.eta,ones(m_zeta,1)); | |
74 obj.Zeta = kr(ones(m_xi,1),ones(m_eta,1),obj.zeta); | |
75 | |
76 | |
77 [X,Y,Z] = ti.map(obj.Xi,obj.Eta,obj.Zeta); | |
78 obj.X = X; | |
79 obj.Y = Y; | |
80 obj.Z = Z; | |
81 | |
82 I_n = eye(obj.n); | |
83 I_xi = speye(m_xi); | |
84 obj.I_xi = I_xi; | |
85 I_eta = speye(m_eta); | |
86 obj.I_eta = I_eta; | |
87 I_zeta = speye(m_zeta); | |
88 obj.I_zeta = I_zeta; | |
89 | |
90 I_N=kr(I_n,I_xi,I_eta,I_zeta); | |
91 | |
92 O_xi = ones(m_xi,1); | |
93 O_eta = ones(m_eta,1); | |
94 O_zeta = ones(m_zeta,1); | |
95 | |
96 | |
97 obj.Hxi = ops_xi.H; | |
98 obj.Heta = ops_eta.H; | |
99 obj.Hzeta = ops_zeta.H; | |
100 obj.h = [ops_xi.h ops_eta.h ops_zeta.h]; | |
101 | |
102 switch operator | |
103 case 'upwind' | |
104 D1_xi = kr((ops_xi.Dp+ops_xi.Dm)/2, I_eta,I_zeta); | |
105 D1_eta = kr(I_xi, (ops_eta.Dp+ops_eta.Dm)/2,I_zeta); | |
106 D1_zeta = kr(I_xi, I_eta,(ops_zeta.Dp+ops_zeta.Dm)/2); | |
107 otherwise | |
108 D1_xi = kr(ops_xi.D1, I_eta,I_zeta); | |
109 D1_eta = kr(I_xi, ops_eta.D1,I_zeta); | |
110 D1_zeta = kr(I_xi, I_eta,ops_zeta.D1); | |
111 end | |
112 | |
113 obj.A = A; | |
114 obj.B = B; | |
115 obj.C = C; | |
116 | |
117 obj.X_xi = D1_xi*X; | |
118 obj.X_eta = D1_eta*X; | |
119 obj.X_zeta = D1_zeta*X; | |
120 obj.Y_xi = D1_xi*Y; | |
121 obj.Y_eta = D1_eta*Y; | |
122 obj.Y_zeta = D1_zeta*Y; | |
123 obj.Z_xi = D1_xi*Z; | |
124 obj.Z_eta = D1_eta*Z; | |
125 obj.Z_zeta = D1_zeta*Z; | |
126 | |
127 obj.Ahat = @transform_coefficient_matrix; | |
128 obj.Bhat = @transform_coefficient_matrix; | |
129 obj.Chat = @transform_coefficient_matrix; | |
130 obj.E = @(obj,x,y,z,~,~,~,~,~,~)E(obj,x,y,z); | |
131 | |
132 obj.Aevaluated = obj.evaluateCoefficientMatrix(obj.Ahat,obj.X, obj.Y,obj.Z, obj.X_eta,obj.X_zeta,obj.Y_eta,obj.Y_zeta,obj.Z_eta,obj.Z_zeta); | |
133 obj.Bevaluated = obj.evaluateCoefficientMatrix(obj.Bhat,obj.X, obj.Y,obj.Z, obj.X_zeta,obj.X_xi,obj.Y_zeta,obj.Y_xi,obj.Z_zeta,obj.Z_xi); | |
134 obj.Cevaluated = obj.evaluateCoefficientMatrix(obj.Chat,obj.X,obj.Y,obj.Z, obj.X_xi,obj.X_eta,obj.Y_xi,obj.Y_eta,obj.Z_xi,obj.Z_eta); | |
135 | |
136 switch operator | |
137 case 'upwind' | |
138 clear D1_xi D1_eta D1_zeta | |
139 alphaA = max(abs(eig(obj.Ahat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_eta(end),obj.X_zeta(end),obj.Y_eta(end),obj.Y_zeta(end),obj.Z_eta(end),obj.Z_zeta(end))))); | |
140 alphaB = max(abs(eig(obj.Bhat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_zeta(end),obj.X_xi(end),obj.Y_zeta(end),obj.Y_xi(end),obj.Z_zeta(end),obj.Z_xi(end))))); | |
141 alphaC = max(abs(eig(obj.Chat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_xi(end),obj.X_eta(end),obj.Y_xi(end),obj.Y_eta(end),obj.Z_xi(end),obj.Z_eta(end))))); | |
142 | |
143 Ap = (obj.Aevaluated+alphaA*I_N)/2; | |
144 Dmxi = kr(I_n, ops_xi.Dm, I_eta,I_zeta); | |
145 diffSum = -Ap*Dmxi; | |
146 clear Ap Dmxi | |
147 | |
148 Am = (obj.Aevaluated-alphaA*I_N)/2; | |
149 | |
150 obj.Aevaluated = []; | |
151 Dpxi = kr(I_n, ops_xi.Dp, I_eta,I_zeta); | |
152 temp = Am*Dpxi; | |
153 diffSum = diffSum-temp; | |
154 clear Am Dpxi | |
155 | |
156 Bp = (obj.Bevaluated+alphaB*I_N)/2; | |
157 Dmeta = kr(I_n, I_xi, ops_eta.Dm,I_zeta); | |
158 temp = Bp*Dmeta; | |
159 diffSum = diffSum-temp; | |
160 clear Bp Dmeta | |
161 | |
162 Bm = (obj.Bevaluated-alphaB*I_N)/2; | |
163 obj.Bevaluated = []; | |
164 Dpeta = kr(I_n, I_xi, ops_eta.Dp,I_zeta); | |
165 temp = Bm*Dpeta; | |
166 diffSum = diffSum-temp; | |
167 clear Bm Dpeta | |
168 | |
169 Cp = (obj.Cevaluated+alphaC*I_N)/2; | |
170 Dmzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dm); | |
171 temp = Cp*Dmzeta; | |
172 diffSum = diffSum-temp; | |
173 clear Cp Dmzeta | |
174 | |
175 Cm = (obj.Cevaluated-alphaC*I_N)/2; | |
176 clear I_N | |
177 obj.Cevaluated = []; | |
178 Dpzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dp); | |
179 temp = Cm*Dpzeta; | |
180 diffSum = diffSum-temp; | |
181 clear Cm Dpzeta temp | |
182 | |
183 obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta... | |
184 +obj.X_zeta.*obj.Y_xi.*obj.Z_eta... | |
185 +obj.X_eta.*obj.Y_zeta.*obj.Z_xi... | |
186 -obj.X_xi.*obj.Y_zeta.*obj.Z_eta... | |
187 -obj.X_eta.*obj.Y_xi.*obj.Z_zeta... | |
188 -obj.X_zeta.*obj.Y_eta.*obj.Z_xi; | |
189 | |
190 obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot)); | |
191 obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]); | |
192 | |
193 obj.D = obj.Ji*diffSum-obj.Eevaluated; | |
194 | |
195 case 'standard' | |
196 D1_xi = kr(I_n,D1_xi); | |
197 D1_eta = kr(I_n,D1_eta); | |
198 D1_zeta = kr(I_n,D1_zeta); | |
199 | |
200 obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta... | |
201 +obj.X_zeta.*obj.Y_xi.*obj.Z_eta... | |
202 +obj.X_eta.*obj.Y_zeta.*obj.Z_xi... | |
203 -obj.X_xi.*obj.Y_zeta.*obj.Z_eta... | |
204 -obj.X_eta.*obj.Y_xi.*obj.Z_zeta... | |
205 -obj.X_zeta.*obj.Y_eta.*obj.Z_xi; | |
206 | |
207 obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot)); | |
208 obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]); | |
209 | |
210 obj.D = obj.Ji*(-obj.Aevaluated*D1_xi-obj.Bevaluated*D1_eta -obj.Cevaluated*D1_zeta)-obj.Eevaluated; | |
211 otherwise | |
212 error('Operator not supported') | |
213 end | |
214 | |
215 obj.Hxii = kr(I_n, ops_xi.HI, I_eta,I_zeta); | |
216 obj.Hetai = kr(I_n, I_xi, ops_eta.HI,I_zeta); | |
217 obj.Hzetai = kr(I_n, I_xi,I_eta, ops_zeta.HI); | |
218 | |
219 obj.index_w = (kr(ops_xi.e_l, O_eta,O_zeta)==1); | |
220 obj.index_e = (kr(ops_xi.e_r, O_eta,O_zeta)==1); | |
221 obj.index_s = (kr(O_xi, ops_eta.e_l,O_zeta)==1); | |
222 obj.index_n = (kr(O_xi, ops_eta.e_r,O_zeta)==1); | |
223 obj.index_b = (kr(O_xi, O_eta, ops_zeta.e_l)==1); | |
224 obj.index_t = (kr(O_xi, O_eta, ops_zeta.e_r)==1); | |
225 | |
226 obj.e_w = kr(I_n, ops_xi.e_l, I_eta,I_zeta); | |
227 obj.e_e = kr(I_n, ops_xi.e_r, I_eta,I_zeta); | |
228 obj.e_s = kr(I_n, I_xi, ops_eta.e_l,I_zeta); | |
229 obj.e_n = kr(I_n, I_xi, ops_eta.e_r,I_zeta); | |
230 obj.e_b = kr(I_n, I_xi, I_eta, ops_zeta.e_l); | |
231 obj.e_t = kr(I_n, I_xi, I_eta, ops_zeta.e_r); | |
232 | |
233 obj.Eta_xi = kr(obj.eta,ones(m_xi,1)); | |
234 obj.Zeta_xi = kr(ones(m_eta,1),obj.zeta); | |
235 obj.Xi_eta = kr(obj.xi,ones(m_zeta,1)); | |
236 obj.Zeta_eta = kr(ones(m_xi,1),obj.zeta); | |
237 obj.Xi_zeta = kr(obj.xi,ones(m_eta,1)); | |
238 obj.Eta_zeta = kr(ones(m_zeta,1),obj.eta); | |
239 end | |
240 | |
241 function [ret] = transform_coefficient_matrix(obj,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2) | |
242 ret = obj.A(obj,x,y,z).*(y_1.*z_2-z_1.*y_2); | |
243 ret = ret+obj.B(obj,x,y,z).*(x_2.*z_1-x_1.*z_2); | |
244 ret = ret+obj.C(obj,x,y,z).*(x_1.*y_2-x_2.*y_1); | |
245 end | |
246 | |
247 | |
248 % Closure functions return the opertors applied to the own doamin to close the boundary | |
249 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
250 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
251 % type is a string specifying the type of boundary condition if there are several. | |
252 % data is a function returning the data that should be applied at the boundary. | |
253 function [closure, penalty] = boundary_condition(obj,boundary,type,L) | |
254 default_arg('type','char'); | |
255 BM = boundary_matrices(obj,boundary); | |
256 | |
257 switch type | |
258 case{'c','char'} | |
259 [closure,penalty] = boundary_condition_char(obj,BM); | |
260 case{'general'} | |
261 [closure,penalty] = boundary_condition_general(obj,BM,boundary,L); | |
262 otherwise | |
263 error('No such boundary condition') | |
264 end | |
265 end | |
266 | |
267 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | |
268 error('An interface function does not exist yet'); | |
269 end | |
270 | |
271 function N = size(obj) | |
272 N = obj.m; | |
273 end | |
274 | |
275 % Evaluates the symbolic Coeffiecient matrix mat | |
276 function [ret] = evaluateCoefficientMatrix(obj,mat, X, Y, Z , x_1 , x_2 , y_1 , y_2 , z_1 , z_2) | |
277 params = obj.params; | |
278 side = max(length(X),length(Y)); | |
279 if isa(mat,'function_handle') | |
280 [rows,cols] = size(mat(obj,0,0,0,0,0,0,0,0,0)); | |
281 x_1 = kr(obj.onesN,x_1); | |
282 x_2 = kr(obj.onesN,x_2); | |
283 y_1 = kr(obj.onesN,y_1); | |
284 y_2 = kr(obj.onesN,y_2); | |
285 z_1 = kr(obj.onesN,z_1); | |
286 z_2 = kr(obj.onesN,z_2); | |
287 matVec = mat(obj,X',Y',Z',x_1',x_2',y_1',y_2',z_1',z_2'); | |
288 matVec = sparse(matVec); | |
289 else | |
290 matVec = mat; | |
291 [rows,cols] = size(matVec); | |
292 side = max(length(X),length(Y)); | |
293 cols = cols/side; | |
294 end | |
295 matVec(abs(matVec)<10^(-10)) = 0; | |
296 ret = cell(rows,cols); | |
297 | |
298 for ii = 1:rows | |
299 for jj = 1:cols | |
300 ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side)); | |
301 end | |
302 end | |
303 ret = cell2mat(ret); | |
304 end | |
305 | |
306 function [BM] = boundary_matrices(obj,boundary) | |
307 params = obj.params; | |
308 BM.boundary = boundary; | |
309 switch boundary | |
310 case {'w','W','west'} | |
311 BM.e_ = obj.e_w; | |
312 mat = obj.Ahat; | |
313 BM.boundpos = 'l'; | |
314 BM.Hi = obj.Hxii; | |
315 BM.index = obj.index_w; | |
316 BM.x_1 = obj.X_eta(BM.index); | |
317 BM.x_2 = obj.X_zeta(BM.index); | |
318 BM.y_1 = obj.Y_eta(BM.index); | |
319 BM.y_2 = obj.Y_zeta(BM.index); | |
320 BM.z_1 = obj.Z_eta(BM.index); | |
321 BM.z_2 = obj.Z_zeta(BM.index); | |
322 case {'e','E','east'} | |
323 BM.e_ = obj.e_e; | |
324 mat = obj.Ahat; | |
325 BM.boundpos = 'r'; | |
326 BM.Hi = obj.Hxii; | |
327 BM.index = obj.index_e; | |
328 BM.x_1 = obj.X_eta(BM.index); | |
329 BM.x_2 = obj.X_zeta(BM.index); | |
330 BM.y_1 = obj.Y_eta(BM.index); | |
331 BM.y_2 = obj.Y_zeta(BM.index); | |
332 BM.z_1 = obj.Z_eta(BM.index); | |
333 BM.z_2 = obj.Z_zeta(BM.index); | |
334 case {'s','S','south'} | |
335 BM.e_ = obj.e_s; | |
336 mat = obj.Bhat; | |
337 BM.boundpos = 'l'; | |
338 BM.Hi = obj.Hetai; | |
339 BM.index = obj.index_s; | |
340 BM.x_1 = obj.X_zeta(BM.index); | |
341 BM.x_2 = obj.X_xi(BM.index); | |
342 BM.y_1 = obj.Y_zeta(BM.index); | |
343 BM.y_2 = obj.Y_xi(BM.index); | |
344 BM.z_1 = obj.Z_zeta(BM.index); | |
345 BM.z_2 = obj.Z_xi(BM.index); | |
346 case {'n','N','north'} | |
347 BM.e_ = obj.e_n; | |
348 mat = obj.Bhat; | |
349 BM.boundpos = 'r'; | |
350 BM.Hi = obj.Hetai; | |
351 BM.index = obj.index_n; | |
352 BM.x_1 = obj.X_zeta(BM.index); | |
353 BM.x_2 = obj.X_xi(BM.index); | |
354 BM.y_1 = obj.Y_zeta(BM.index); | |
355 BM.y_2 = obj.Y_xi(BM.index); | |
356 BM.z_1 = obj.Z_zeta(BM.index); | |
357 BM.z_2 = obj.Z_xi(BM.index); | |
358 case{'b','B','Bottom'} | |
359 BM.e_ = obj.e_b; | |
360 mat = obj.Chat; | |
361 BM.boundpos = 'l'; | |
362 BM.Hi = obj.Hzetai; | |
363 BM.index = obj.index_b; | |
364 BM.x_1 = obj.X_xi(BM.index); | |
365 BM.x_2 = obj.X_eta(BM.index); | |
366 BM.y_1 = obj.Y_xi(BM.index); | |
367 BM.y_2 = obj.Y_eta(BM.index); | |
368 BM.z_1 = obj.Z_xi(BM.index); | |
369 BM.z_2 = obj.Z_eta(BM.index); | |
370 case{'t','T','Top'} | |
371 BM.e_ = obj.e_t; | |
372 mat = obj.Chat; | |
373 BM.boundpos = 'r'; | |
374 BM.Hi = obj.Hzetai; | |
375 BM.index = obj.index_t; | |
376 BM.x_1 = obj.X_xi(BM.index); | |
377 BM.x_2 = obj.X_eta(BM.index); | |
378 BM.y_1 = obj.Y_xi(BM.index); | |
379 BM.y_2 = obj.Y_eta(BM.index); | |
380 BM.z_1 = obj.Z_xi(BM.index); | |
381 BM.z_2 = obj.Z_eta(BM.index); | |
382 end | |
383 [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(BM.index),obj.Y(BM.index),obj.Z(BM.index),... | |
384 BM.x_1,BM.x_2,BM.y_1,BM.y_2,BM.z_1,BM.z_2); | |
385 BM.side = sum(BM.index); | |
386 BM.pos = signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3); | |
387 end | |
388 | |
389 % Characteristic boundary condition | |
390 function [closure, penalty] = boundary_condition_char(obj,BM) | |
391 side = BM.side; | |
392 pos = BM.pos; | |
393 neg = BM.neg; | |
394 zeroval = BM.zeroval; | |
395 V = BM.V; | |
396 Vi = BM.Vi; | |
397 Hi = BM.Hi; | |
398 D = BM.D; | |
399 e_ = BM.e_; | |
400 | |
401 switch BM.boundpos | |
402 case {'l'} | |
403 tau = sparse(obj.n*side,pos); | |
404 Vi_plus = Vi(1:pos,:); | |
405 tau(1:pos,:) = -abs(D(1:pos,1:pos)); | |
406 closure = Hi*e_*V*tau*Vi_plus*e_'; | |
407 penalty = -Hi*e_*V*tau*Vi_plus; | |
408 case {'r'} | |
409 tau = sparse(obj.n*side,neg); | |
410 tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); | |
411 Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); | |
412 closure = Hi*e_*V*tau*Vi_minus*e_'; | |
413 penalty = -Hi*e_*V*tau*Vi_minus; | |
414 end | |
415 end | |
416 | |
417 % General boundary condition in the form Lu=g(x) | |
418 function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L) | |
419 side = BM.side; | |
420 pos = BM.pos; | |
421 neg = BM.neg; | |
422 zeroval = BM.zeroval; | |
423 V = BM.V; | |
424 Vi = BM.Vi; | |
425 Hi = BM.Hi; | |
426 D = BM.D; | |
427 e_ = BM.e_; | |
428 index = BM.index; | |
429 | |
430 switch BM.boundary | |
431 case{'b','B','bottom'} | |
432 Ji_vec = diag(obj.Ji); | |
433 Ji = diag(Ji_vec(index)); | |
434 Zeta_x = Ji*(obj.Y_xi(index).*obj.Z_eta(index)-obj.Z_xi(index).*obj.Y_eta(index)); | |
435 Zeta_y = Ji*(obj.X_eta(index).*obj.Z_xi(index)-obj.X_xi(index).*obj.Z_eta(index)); | |
436 Zeta_z = Ji*(obj.X_xi(index).*obj.Y_eta(index)-obj.Y_xi(index).*obj.X_eta(index)); | |
437 | |
438 L = obj.evaluateCoefficientMatrix(L,Zeta_x,Zeta_y,Zeta_z,[],[],[],[],[],[]); | |
439 end | |
440 | |
441 switch BM.boundpos | |
442 case {'l'} | |
443 tau = sparse(obj.n*side,pos); | |
444 Vi_plus = Vi(1:pos,:); | |
445 Vi_minus = Vi(pos+zeroval+1:obj.n*side,:); | |
446 V_plus = V(:,1:pos); | |
447 V_minus = V(:,(pos+zeroval)+1:obj.n*side); | |
448 | |
449 tau(1:pos,:) = -abs(D(1:pos,1:pos)); | |
450 R = -inv(L*V_plus)*(L*V_minus); | |
451 closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; | |
452 penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; | |
453 case {'r'} | |
454 tau = sparse(obj.n*side,neg); | |
455 tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); | |
456 Vi_plus = Vi(1:pos,:); | |
457 Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); | |
458 | |
459 V_plus = V(:,1:pos); | |
460 V_minus = V(:,(pos+zeroval)+1:obj.n*side); | |
461 R = -inv(L*V_minus)*(L*V_plus); | |
462 closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; | |
463 penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; | |
464 end | |
465 end | |
466 | |
467 % Function that diagonalizes a symbolic matrix A as A=V*D*Vi | |
468 % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign | |
469 % [d+ ] | |
470 % D = [ d0 ] | |
471 % [ d-] | |
472 % signVec is a vector specifying the number of possitive, zero and negative eigenvalues of D | |
473 function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2) | |
474 params = obj.params; | |
475 eps = 10^(-10); | |
476 if(sum(abs(x_1))>eps) | |
477 syms x_1s | |
478 else | |
479 x_1s = 0; | |
480 end | |
481 | |
482 if(sum(abs(x_2))>eps) | |
483 syms x_2s; | |
484 else | |
485 x_2s = 0; | |
486 end | |
487 | |
488 | |
489 if(sum(abs(y_1))>eps) | |
490 syms y_1s | |
491 else | |
492 y_1s = 0; | |
493 end | |
494 | |
495 if(sum(abs(y_2))>eps) | |
496 syms y_2s; | |
497 else | |
498 y_2s = 0; | |
499 end | |
500 | |
501 if(sum(abs(z_1))>eps) | |
502 syms z_1s | |
503 else | |
504 z_1s = 0; | |
505 end | |
506 | |
507 if(sum(abs(z_2))>eps) | |
508 syms z_2s; | |
509 else | |
510 z_2s = 0; | |
511 end | |
512 | |
513 syms xs ys zs | |
514 [V, D] = eig(mat(obj,xs,ys,zs,x_1s,x_2s,y_1s,y_2s,z_1s,z_2s)); | |
515 Vi = inv(V); | |
516 xs = x; | |
517 ys = y; | |
518 zs = z; | |
519 x_1s = x_1; | |
520 x_2s = x_2; | |
521 y_1s = y_1; | |
522 y_2s = y_2; | |
523 z_1s = z_1; | |
524 z_2s = z_2; | |
525 | |
526 side = max(length(x),length(y)); | |
527 Dret = zeros(obj.n,side*obj.n); | |
528 Vret = zeros(obj.n,side*obj.n); | |
529 Viret = zeros(obj.n,side*obj.n); | |
530 | |
531 for ii=1:obj.n | |
532 for jj=1:obj.n | |
533 Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); | |
534 Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); | |
535 Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); | |
536 end | |
537 end | |
538 | |
539 D = sparse(Dret); | |
540 V = sparse(Vret); | |
541 Vi = sparse(Viret); | |
542 V = obj.evaluateCoefficientMatrix(V,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2); | |
543 D = obj.evaluateCoefficientMatrix(D,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2); | |
544 Vi = obj.evaluateCoefficientMatrix(Vi,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2); | |
545 DD = diag(D); | |
546 | |
547 poseig = (DD>0); | |
548 zeroeig = (DD==0); | |
549 negeig = (DD<0); | |
550 | |
551 D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); | |
552 V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; | |
553 Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; | |
554 signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; | |
555 end | |
556 end | |
557 end |