Mercurial > repos > public > sbplib
comparison +sbp/higher4.m @ 29:32b39dc44474
Removed repository inside +sbp to make it part of the root repo.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 28 Sep 2015 08:47:28 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
28:16acb2775aca | 29:32b39dc44474 |
---|---|
1 function [H, HI, D1, D2, D3, D4, e_1, e_m, M, M4,Q, Q3, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = higher4(m,h) | |
2 | |
3 | |
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
5 %%% 4:de ordn. SBP Finita differens %%% | |
6 %%% operatorer framtagna av Ken Mattsson %%% | |
7 %%% %%% | |
8 %%% 6 randpunkter, diagonal norm %%% | |
9 %%% %%% | |
10 %%% Datum: 2013-11-11 %%% | |
11 %%% %%% | |
12 %%% %%% | |
13 %%% H (Normen) %%% | |
14 %%% D1 (approx f?rsta derivatan) %%% | |
15 %%% D2 (approx andra derivatan) %%% | |
16 %%% D3 (approx tredje derivatan) %%% | |
17 %%% D2 (approx fj?rde derivatan) %%% | |
18 %%% %%% | |
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
20 | |
21 % M?ste ange antal punkter (m) och stegl?ngd (h) | |
22 % Notera att dessa opetratorer ?r framtagna f?r att anv?ndas n?r | |
23 % vi har 3de och 4de derivator i v?r PDE | |
24 % I annat fall anv?nd de "traditionella" som har noggrannare | |
25 % randsplutningar f?r D1 och D2 | |
26 | |
27 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, | |
28 % vilket ?r n?dv?ndigt f?r stabilitet | |
29 | |
30 H=diag(ones(m,1),0); | |
31 H_U=[0.35809e5 / 0.100800e6 0 0 0 0 0; 0 0.13297e5 / 0.11200e5 0 0 0 0; 0 0 0.5701e4 / 0.5600e4 0 0 0; 0 0 0 0.45109e5 / 0.50400e5 0 0; 0 0 0 0 0.35191e5 / 0.33600e5 0; 0 0 0 0 0 0.33503e5 / 0.33600e5;]; | |
32 | |
33 H(1:6,1:6)=H_U; | |
34 H(m-5:m,m-5:m)=fliplr(flipud(H_U)); | |
35 H=H*h; | |
36 HI=inv(H); | |
37 | |
38 | |
39 % First derivative SBP operator, 1st order accurate at first 6 boundary points | |
40 | |
41 q2=-1/12;q1=8/12; | |
42 Q=q2*(diag(ones(m-2,1),2) - diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
43 | |
44 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); | |
45 | |
46 Q_U = [0 0.526249e6 / 0.907200e6 -0.10819e5 / 0.777600e6 -0.50767e5 / 0.907200e6 -0.631e3 / 0.28800e5 0.91e2 / 0.7776e4; -0.526249e6 / 0.907200e6 0 0.1421209e7 / 0.2721600e7 0.16657e5 / 0.201600e6 -0.8467e4 / 0.453600e6 -0.33059e5 / 0.5443200e7; 0.10819e5 / 0.777600e6 -0.1421209e7 / 0.2721600e7 0 0.631187e6 / 0.1360800e7 0.400139e6 / 0.5443200e7 -0.8789e4 / 0.302400e6; 0.50767e5 / 0.907200e6 -0.16657e5 / 0.201600e6 -0.631187e6 / 0.1360800e7 0 0.496403e6 / 0.907200e6 -0.308533e6 / 0.5443200e7; 0.631e3 / 0.28800e5 0.8467e4 / 0.453600e6 -0.400139e6 / 0.5443200e7 -0.496403e6 / 0.907200e6 0 0.1805647e7 / 0.2721600e7; -0.91e2 / 0.7776e4 0.33059e5 / 0.5443200e7 0.8789e4 / 0.302400e6 0.308533e6 / 0.5443200e7 -0.1805647e7 / 0.2721600e7 0;]; | |
47 Q(1:6,1:6)=Q_U; | |
48 Q(m-5:m,m-5:m)=flipud( fliplr( -Q_U ) ); | |
49 | |
50 e_1=zeros(m,1);e_1(1)=1; | |
51 e_m=zeros(m,1);e_m(m)=1; | |
52 | |
53 | |
54 D1=HI*(Q-1/2*e_1*e_1'+1/2*e_m*e_m') ; | |
55 | |
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
57 | |
58 | |
59 | |
60 % Second derivative, 1st order accurate at first 6 boundary points | |
61 m2=1/12;m1=-16/12;m0=30/12; | |
62 M=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); | |
63 %M=(1/12*diag(ones(m-2,1),2)-16/12*diag(ones(m-1,1),1)-16/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)+30/12*diag(ones(m,1),0)); | |
64 M_U=[0.2386127e7 / 0.2177280e7 -0.515449e6 / 0.453600e6 -0.10781e5 / 0.777600e6 0.61567e5 / 0.1360800e7 0.6817e4 / 0.403200e6 -0.1069e4 / 0.136080e6; -0.515449e6 / 0.453600e6 0.4756039e7 / 0.2177280e7 -0.1270009e7 / 0.1360800e7 -0.3751e4 / 0.28800e5 0.3067e4 / 0.680400e6 0.119459e6 / 0.10886400e8; -0.10781e5 / 0.777600e6 -0.1270009e7 / 0.1360800e7 0.111623e6 / 0.60480e5 -0.555587e6 / 0.680400e6 -0.551339e6 / 0.5443200e7 0.8789e4 / 0.453600e6; 0.61567e5 / 0.1360800e7 -0.3751e4 / 0.28800e5 -0.555587e6 / 0.680400e6 0.1025327e7 / 0.544320e6 -0.464003e6 / 0.453600e6 0.222133e6 / 0.5443200e7; 0.6817e4 / 0.403200e6 0.3067e4 / 0.680400e6 -0.551339e6 / 0.5443200e7 -0.464003e6 / 0.453600e6 0.5074159e7 / 0.2177280e7 -0.1784047e7 / 0.1360800e7; -0.1069e4 / 0.136080e6 0.119459e6 / 0.10886400e8 0.8789e4 / 0.453600e6 0.222133e6 / 0.5443200e7 -0.1784047e7 / 0.1360800e7 0.1812749e7 / 0.725760e6;]; | |
65 | |
66 M(1:6,1:6)=M_U; | |
67 | |
68 M(m-5:m,m-5:m)=flipud( fliplr( M_U ) ); | |
69 M=M/h; | |
70 | |
71 S_U=[-0.11e2 / 0.6e1 3 -0.3e1 / 0.2e1 0.1e1 / 0.3e1;]/h; | |
72 S_1=zeros(1,m); | |
73 S_1(1:4)=S_U; | |
74 S_m=zeros(1,m); | |
75 | |
76 S_m(m-3:m)=fliplr(-S_U); | |
77 | |
78 D2=HI*(-M-e_1*S_1+e_m*S_m); | |
79 | |
80 | |
81 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
82 | |
83 | |
84 | |
85 % Third derivative, 1st order accurate at first 6 boundary points | |
86 | |
87 q3=-1/8;q2=1;q1=-13/8; | |
88 Q3=q3*(diag(ones(m-3,1),3)-diag(ones(m-3,1),-3))+q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
89 | |
90 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); | |
91 | |
92 | |
93 Q3_U = [0 -0.88471e5 / 0.67200e5 0.58139e5 / 0.33600e5 -0.1167e4 / 0.2800e4 -0.89e2 / 0.11200e5 0.7e1 / 0.640e3; 0.88471e5 / 0.67200e5 0 -0.43723e5 / 0.16800e5 0.46783e5 / 0.33600e5 -0.191e3 / 0.3200e4 -0.1567e4 / 0.33600e5; -0.58139e5 / 0.33600e5 0.43723e5 / 0.16800e5 0 -0.4049e4 / 0.2400e4 0.29083e5 / 0.33600e5 -0.71e2 / 0.1400e4; 0.1167e4 / 0.2800e4 -0.46783e5 / 0.33600e5 0.4049e4 / 0.2400e4 0 -0.8591e4 / 0.5600e4 0.10613e5 / 0.11200e5; 0.89e2 / 0.11200e5 0.191e3 / 0.3200e4 -0.29083e5 / 0.33600e5 0.8591e4 / 0.5600e4 0 -0.108271e6 / 0.67200e5; -0.7e1 / 0.640e3 0.1567e4 / 0.33600e5 0.71e2 / 0.1400e4 -0.10613e5 / 0.11200e5 0.108271e6 / 0.67200e5 0;]; | |
94 | |
95 Q3(1:6,1:6)=Q3_U; | |
96 Q3(m-5:m,m-5:m)=flipud( fliplr( -Q3_U ) ); | |
97 Q3=Q3/h^2; | |
98 | |
99 | |
100 | |
101 S2_U=[2 -5 4 -1;]/h^2; | |
102 S2_1=zeros(1,m); | |
103 S2_1(1:4)=S2_U; | |
104 S2_m=zeros(1,m); | |
105 S2_m(m-3:m)=fliplr(S2_U); | |
106 | |
107 | |
108 | |
109 D3=HI*(Q3 - e_1*S2_1 + e_m*S2_m +1/2*S_1'*S_1 -1/2*S_m'*S_m ) ; | |
110 | |
111 % Fourth derivative, 0th order accurate at first 6 boundary points (still | |
112 % yield 4th order convergence if stable: for example u_tt=-u_xxxx | |
113 | |
114 m3=-1/6;m2=2;m1=-13/2;m0=28/3; | |
115 M4=m3*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3))+m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); | |
116 | |
117 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); | |
118 | |
119 M4_U=[0.4596181e7 / 0.1814400e7 -0.10307743e8 / 0.1814400e7 0.160961e6 / 0.43200e5 -0.535019e6 / 0.907200e6 0.109057e6 / 0.1814400e7 -0.29273e5 / 0.604800e6; -0.10307743e8 / 0.1814400e7 0.8368543e7 / 0.604800e6 -0.9558943e7 / 0.907200e6 0.2177057e7 / 0.907200e6 -0.11351e5 / 0.86400e5 0.204257e6 / 0.1814400e7; 0.160961e6 / 0.43200e5 -0.9558943e7 / 0.907200e6 0.4938581e7 / 0.453600e6 -0.786473e6 / 0.151200e6 0.1141057e7 / 0.907200e6 -0.120619e6 / 0.907200e6; -0.535019e6 / 0.907200e6 0.2177057e7 / 0.907200e6 -0.786473e6 / 0.151200e6 0.3146581e7 / 0.453600e6 -0.4614143e7 / 0.907200e6 0.24587e5 / 0.14400e5; 0.109057e6 / 0.1814400e7 -0.11351e5 / 0.86400e5 0.1141057e7 / 0.907200e6 -0.4614143e7 / 0.907200e6 0.185709e6 / 0.22400e5 -0.11293343e8 / 0.1814400e7; -0.29273e5 / 0.604800e6 0.204257e6 / 0.1814400e7 -0.120619e6 / 0.907200e6 0.24587e5 / 0.14400e5 -0.11293343e8 / 0.1814400e7 0.16787381e8 / 0.1814400e7;]; | |
120 | |
121 M4(1:6,1:6)=M4_U; | |
122 | |
123 M4(m-5:m,m-5:m)=flipud( fliplr( M4_U ) ); | |
124 M4=M4/h^3; | |
125 | |
126 S3_U=[-1 3 -3 1;]/h^3; | |
127 S3_1=zeros(1,m); | |
128 S3_1(1:4)=S3_U; | |
129 S3_m=zeros(1,m); | |
130 S3_m(m-3:m)=fliplr(-S3_U); | |
131 | |
132 D4=HI*(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m); | |
133 | |
134 | |
135 % L=h*(m-1); | |
136 % | |
137 % x1=linspace(0,L,m)'; | |
138 % x2=x1.^2/fac(2); | |
139 % x3=x1.^3/fac(3); | |
140 % x4=x1.^4/fac(4); | |
141 % x5=x1.^5/fac(5); | |
142 % | |
143 % x0=x1.^0/fac(1); | |
144 | |
145 S_1 = S_1'; | |
146 S2_1 = S2_1'; | |
147 S3_1 = S3_1'; | |
148 S_m = S_m'; | |
149 S2_m = S2_m'; | |
150 S3_m = S3_m'; | |
151 | |
152 | |
153 | |
154 end |