Mercurial > repos > public > sbplib
comparison +sbp/higher2_compatible_halfvariable.m @ 29:32b39dc44474
Removed repository inside +sbp to make it part of the root repo.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 28 Sep 2015 08:47:28 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
28:16acb2775aca | 29:32b39dc44474 |
---|---|
1 % Returns D2 as a function handle | |
2 function [H, HI, D1, D2, D3, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = higher2_compatible_halfvariable(m,h) | |
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
4 %%% 4:de ordn. SBP Finita differens %%% | |
5 %%% operatorer framtagna av Ken Mattsson %%% | |
6 %%% %%% | |
7 %%% 6 randpunkter, diagonal norm %%% | |
8 %%% %%% | |
9 %%% Datum: 2013-11-11 %%% | |
10 %%% %%% | |
11 %%% %%% | |
12 %%% H (Normen) %%% | |
13 %%% D1 (approx f?rsta derivatan) %%% | |
14 %%% D2 (approx andra derivatan) %%% | |
15 %%% D3 (approx tredje derivatan) %%% | |
16 %%% D2 (approx fj?rde derivatan) %%% | |
17 %%% %%% | |
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
19 | |
20 % M?ste ange antal punkter (m) och stegl?ngd (h) | |
21 % Notera att dessa opetratorer ?r framtagna f?r att anv?ndas n?r | |
22 % vi har 3de och 4de derivator i v?r PDE | |
23 % I annat fall anv?nd de "traditionella" som har noggrannare | |
24 % randsplutningar f?r D1 och D2 | |
25 | |
26 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, | |
27 % vilket ?r n?dv?ndigt f?r stabilitet | |
28 | |
29 H=diag(ones(m,1),0);H(1,1)=1/2;H(m,m)=1/2; | |
30 | |
31 | |
32 H=H*h; | |
33 HI=inv(H); | |
34 | |
35 | |
36 % First derivative SBP operator, 1st order accurate at first 6 boundary points | |
37 | |
38 q1=1/2; | |
39 Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
40 | |
41 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); | |
42 | |
43 | |
44 e_1=zeros(m,1);e_1(1)=1; | |
45 e_m=zeros(m,1);e_m(m)=1; | |
46 | |
47 | |
48 D1=HI*(Q-1/2*e_1*e_1'+1/2*e_m*e_m') ; | |
49 | |
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
51 | |
52 | |
53 | |
54 % Second derivative, 1st order accurate at first boundary points | |
55 | |
56 %% below for constant coefficients | |
57 % m1=-1;m0=2; | |
58 % M=m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);M(1,1)=1;M(m,m)=1; | |
59 % M=M/h; | |
60 %D2=HI*(-M-e_1*S_1+e_m*S_m); | |
61 | |
62 %% Below for variable coefficients | |
63 %% Require a vector c with the koeffients | |
64 | |
65 S_U=[-3/2 2 -1/2]/h; | |
66 S_1=zeros(1,m); | |
67 S_1(1:3)=S_U; | |
68 S_m=zeros(1,m); | |
69 S_m(m-2:m)=fliplr(-S_U); | |
70 | |
71 S_1 = S_1'; | |
72 S_m = S_m'; | |
73 | |
74 M=sparse(m,m); | |
75 e_1 = sparse(e_1); | |
76 e_m = sparse(e_m); | |
77 S_1 = sparse(S_1); | |
78 S_m = sparse(S_m); | |
79 | |
80 scheme_width = 3; | |
81 scheme_radius = (scheme_width-1)/2; | |
82 r = (1+scheme_radius):(m-scheme_radius); | |
83 | |
84 function D2 = D2_fun(c) | |
85 | |
86 Mm1 = -c(r-1)/2 - c(r)/2; | |
87 M0 = c(r-1)/2 + c(r) + c(r+1)/2; | |
88 Mp1 = -c(r)/2 - c(r+1)/2; | |
89 | |
90 M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m); | |
91 | |
92 | |
93 M(1:2,1:2)=[c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;]; | |
94 M(m-1:m,m-1:m)=[c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;]; | |
95 M=M/h; | |
96 | |
97 D2=HI*(-M-c(1)*e_1*S_1'+c(m)*e_m*S_m'); | |
98 end | |
99 D2 = @D2_fun; | |
100 | |
101 | |
102 | |
103 | |
104 | |
105 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
106 | |
107 | |
108 | |
109 % Third derivative, 1st order accurate at first 6 boundary points | |
110 | |
111 q2=1/2;q1=-1; | |
112 Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
113 | |
114 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); | |
115 | |
116 | |
117 Q3_U = [0 -0.13e2 / 0.16e2 0.7e1 / 0.8e1 -0.1e1 / 0.16e2; 0.13e2 / 0.16e2 0 -0.23e2 / 0.16e2 0.5e1 / 0.8e1; -0.7e1 / 0.8e1 0.23e2 / 0.16e2 0 -0.17e2 / 0.16e2; 0.1e1 / 0.16e2 -0.5e1 / 0.8e1 0.17e2 / 0.16e2 0;]; | |
118 Q3(1:4,1:4)=Q3_U; | |
119 Q3(m-3:m,m-3:m)=flipud( fliplr( -Q3_U ) ); | |
120 Q3=Q3/h^2; | |
121 | |
122 | |
123 | |
124 S2_U=[1 -2 1;]/h^2; | |
125 S2_1=zeros(1,m); | |
126 S2_1(1:3)=S2_U; | |
127 S2_m=zeros(1,m); | |
128 S2_m(m-2:m)=fliplr(S2_U); | |
129 S2_1 = S2_1'; | |
130 S2_m = S2_m'; | |
131 | |
132 | |
133 | |
134 D3=HI*(Q3 - e_1*S2_1' + e_m*S2_m' +1/2*S_1*S_1' -1/2*S_m*S_m' ) ; | |
135 | |
136 % Fourth derivative, 0th order accurate at first 6 boundary points (still | |
137 % yield 4th order convergence if stable: for example u_tt=-u_xxxx | |
138 | |
139 m2=1;m1=-4;m0=6; | |
140 M4=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); | |
141 | |
142 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); | |
143 | |
144 M4_U=[0.13e2 / 0.10e2 -0.12e2 / 0.5e1 0.9e1 / 0.10e2 0.1e1 / 0.5e1; -0.12e2 / 0.5e1 0.26e2 / 0.5e1 -0.16e2 / 0.5e1 0.2e1 / 0.5e1; 0.9e1 / 0.10e2 -0.16e2 / 0.5e1 0.47e2 / 0.10e2 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;]; | |
145 | |
146 | |
147 M4(1:4,1:4)=M4_U; | |
148 | |
149 M4(m-3:m,m-3:m)=flipud( fliplr( M4_U ) ); | |
150 M4=M4/h^3; | |
151 | |
152 S3_U=[-1 3 -3 1;]/h^3; | |
153 S3_1=zeros(1,m); | |
154 S3_1(1:4)=S3_U; | |
155 S3_m=zeros(1,m); | |
156 S3_m(m-3:m)=fliplr(-S3_U); | |
157 S3_1 = S3_1'; | |
158 S3_m = S3_m'; | |
159 | |
160 D4=HI*(M4-e_1*S3_1'+e_m*S3_m' + S_1*S2_1'-S_m*S2_m'); | |
161 end |