Mercurial > repos > public > sbplib
comparison +time/+rk4/rungekutta_6.m @ 845:1e057b0f2fed feature/burgers1d
Add RK6 with residual viscosity update and reduce computational effort of spatial scheme
- Add RK6 with residual updates
- Change the D2 operator for upwind schemes to one less computationally expensive.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 19 Sep 2018 16:32:05 +0200 |
parents | 48b6fb693025 |
children |
comparison
equal
deleted
inserted
replaced
844:9e4e0576ca0f | 845:1e057b0f2fed |
---|---|
1 % Takes one time step of size k using the rungekutta method | 1 % Takes one time step of size dt using the rungekutta method |
2 % starting from v_0 and where the function F(v,t) gives the | 2 % starting from v_0 and where the function F(v,t) gives the |
3 % time derivatives. | 3 % time derivatives. |
4 function v = rungekutta_6(v, t , k, F) | 4 function v = rungekutta_6(v, t , dt, F) |
5 s = 7 | 5 s = 7 |
6 k = zeros(length(v),s) | 6 k = zeros(length(v),s) |
7 a = zeros(7,6); | 7 a = zeros(7,6); |
8 c = [0, 4/7, 5/7, 6/7, (5-sqrt(5))/10, (5+sqrt(5))/10, 1]; | 8 c = [0, 4/7, 5/7, 6/7, (5-sqrt(5))/10, (5+sqrt(5))/10, 1]; |
9 b = [1/12, 0, 0, 0, 5/12, 5/12, 1/12]; | 9 b = [1/12, 0, 0, 0, 5/12, 5/12, 1/12]; |
13 115/112, -5/16, 0, 0, 0, 0; | 13 115/112, -5/16, 0, 0, 0, 0; |
14 589/630, 5/18, -16/45, 0, 0, 0; | 14 589/630, 5/18, -16/45, 0, 0, 0; |
15 229/1200 - 29/6000*sqrt(5), 119/240 - 187/1200*sqrt(5), -14/75 + 34/375*sqrt(5), -3/100*sqrt(5), 0, 0; | 15 229/1200 - 29/6000*sqrt(5), 119/240 - 187/1200*sqrt(5), -14/75 + 34/375*sqrt(5), -3/100*sqrt(5), 0, 0; |
16 71/2400 - 587/12000*sqrt(5), 187/480 - 391/2400*sqrt(5), -38/75 + 26/375*sqrt(5), 27/80 - 3/400*sqrt(5), (1+sqrt(5))/4, 0; | 16 71/2400 - 587/12000*sqrt(5), 187/480 - 391/2400*sqrt(5), -38/75 + 26/375*sqrt(5), 27/80 - 3/400*sqrt(5), (1+sqrt(5))/4, 0; |
17 -49/480 + 43/160*sqrt(5), -425/96 + 51/32*sqrt(5), 52/15 - 4/5*sqrt(5), -27/16 + 3/16*sqrt(5), 5/4 - 3/4*sqrt(5), 5/2 - 1/2*sqrt(5); | 17 -49/480 + 43/160*sqrt(5), -425/96 + 51/32*sqrt(5), 52/15 - 4/5*sqrt(5), -27/16 + 3/16*sqrt(5), 5/4 - 3/4*sqrt(5), 5/2 - 1/2*sqrt(5); |
18 ] | 18 ]; |
19 | 19 |
20 for i = 1:s | 20 for i = 1:s |
21 u = v | 21 u = v; |
22 for j = 1: i-1 | 22 for j = 1:i-1 |
23 u = u + h*a(i,j) * k(:,j) | 23 u = u + dt*a(i,j)*k(:,j); |
24 end | 24 end |
25 k(:,i) = F(t+c(i)*k,u) | 25 k(:,i) = F(t+c(i)*dt,u); |
26 end | 26 end |
27 | 27 |
28 for i = 1:s | 28 for i = 1:s |
29 v = v + k*b(i)*k(:,i) | 29 v = v + dt*b(i)*k(:,i); |
30 end | 30 end |
31 end | 31 end |